AFLOW Prototype: AB_oC8_63_c_c-001
This structure originally had the label AB_oC8_63_c_c. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/QWV1
or
https://aflow.org/p/AB_oC8_63_c_c-001
or
PDF Version
Prototype | BCr |
AFLOW prototype label | AB_oC8_63_c_c-001 |
Strukturbericht designation | $B33$ |
ICSD | 44250 |
Pearson symbol | oC8 |
Space group number | 63 |
Space group symbol | $Cmcm$ |
AFLOW prototype command |
aflow --proto=AB_oC8_63_c_c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak y_{2}$ |
AgCa, AlHf, AlTh, AlY, AlZr, AuGd, BNb, BNi, BTa, BV, BaPb, CaGe, CaSi, CaSn, CeNi, CePt, CeRh, CoTh, DyGa, DyGe, ErNi, GaGd, GaPr, GdGe, GeHo, GeNi, GePr, HfNi, HfPt, HoNi, ITl, IrTh, LaNi, LaPt, LaRh, LuNi, NdNi, NdRh, NiPr, NiPu, NiSm, NiTb, NiTm, NiZr, PrRh, PtTh, PtZr, RhTh, RuTh, SiSr, SiY, (Ge, Si)Ho
--params
) specified in their corresponding CIF files. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4c) | B I |
$\mathbf{B_{2}}$ | = | $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4c) | B I |
$\mathbf{B_{3}}$ | = | $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4c) | Cr I |
$\mathbf{B_{4}}$ | = | $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4c) | Cr I |