Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hR6_160_b_b-001

This structure originally had the label AB_hR6_160_b_b. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/MV4U
or https://aflow.org/p/AB_hR6_160_b_b-001
or PDF Version

Millerite (NiS, $B13$) Structure: AB_hR6_160_b_b-001

Picture of Structure; Click for Big Picture
Prototype NiS
AFLOW prototype label AB_hR6_160_b_b-001
Strukturbericht designation $B13$
Mineral name millerite
ICSD 40054
Pearson symbol hR6
Space group number 160
Space group symbol $R3m$
AFLOW prototype command aflow --proto=AB_hR6_160_b_b-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}$

Other compounds with this structure

$\beta$-FeS,  NiSe


  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (3b) Ni I
$\mathbf{B_{2}}$ = $z_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (3b) Ni I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (3b) Ni I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (3b) S I
$\mathbf{B_{5}}$ = $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (3b) S I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (3b) S I

References

  • V. Rajamani and C. T. Prewitt, The Crystal Structure of Millerite, Can. Mineral. 12, 253–257 (1974).

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=AB_hR6_160_b_b --params=$a,c/a,x_{1},z_{1},x_{2},z_{2}$

Species:

Running:

Output: