AFLOW Prototype: AB_hR10_160_5a_5a-001
This structure originally had the label AB_hR10_160_5a_5a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/KX5G
or
https://aflow.org/p/AB_hR10_160_5a_5a-001
or
PDF Version
Prototype | CSi |
AFLOW prototype label | AB_hR10_160_5a_5a-001 |
Strukturbericht designation | $B7$ |
Mineral name | moissanite |
ICSD | 24168 |
Pearson symbol | hR10 |
Space group number | 160 |
Space group symbol | $R3m$ |
AFLOW prototype command |
aflow --proto=AB_hR10_160_5a_5a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}$ |
Type I $\alpha$-silicon carbide.The atomic positions are not well determined. We follow (Thibault, 1944) and assume that the (0001) planes of carbon atoms are equally spaced, and that each carbon atom has a silicon atom at a distance of $c/20$ along the $z$ axis.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $c x_{1} \,\mathbf{\hat{z}}$ | (1a) | C I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $c x_{2} \,\mathbf{\hat{z}}$ | (1a) | C II |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $c x_{3} \,\mathbf{\hat{z}}$ | (1a) | C III |
$\mathbf{B_{4}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $c x_{4} \,\mathbf{\hat{z}}$ | (1a) | C IV |
$\mathbf{B_{5}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $c x_{5} \,\mathbf{\hat{z}}$ | (1a) | C V |
$\mathbf{B_{6}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $c x_{6} \,\mathbf{\hat{z}}$ | (1a) | Si I |
$\mathbf{B_{7}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $c x_{7} \,\mathbf{\hat{z}}$ | (1a) | Si II |
$\mathbf{B_{8}}$ | = | $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ | = | $c x_{8} \,\mathbf{\hat{z}}$ | (1a) | Si III |
$\mathbf{B_{9}}$ | = | $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ | = | $c x_{9} \,\mathbf{\hat{z}}$ | (1a) | Si IV |
$\mathbf{B_{10}}$ | = | $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ | = | $c x_{10} \,\mathbf{\hat{z}}$ | (1a) | Si V |