Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hR10_160_5a_5a-001

This structure originally had the label AB_hR10_160_5a_5a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/KX5G
or https://aflow.org/p/AB_hR10_160_5a_5a-001
or PDF Version

Moissanite-15R (SiC, $B7$) Structure: AB_hR10_160_5a_5a-001

Picture of Structure; Click for Big Picture
Prototype CSi
AFLOW prototype label AB_hR10_160_5a_5a-001
Strukturbericht designation $B7$
Mineral name moissanite
ICSD 24168
Pearson symbol hR10
Space group number 160
Space group symbol $R3m$
AFLOW prototype command aflow --proto=AB_hR10_160_5a_5a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}$

  • (Ewald, 1931) and (Thibault, 1944) both call this structure Type I $\alpha$-silicon carbide. The atomic positions are not well determined. We follow (Thibault, 1944) and assume that the (0001) planes of carbon atoms are equally spaced, and that each carbon atom has a silicon atom at a distance of $c/20$ along the $z$ axis.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (1a) C I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (1a) C II
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (1a) C III
$\mathbf{B_{4}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (1a) C IV
$\mathbf{B_{5}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $c x_{5} \,\mathbf{\hat{z}}$ (1a) C V
$\mathbf{B_{6}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $c x_{6} \,\mathbf{\hat{z}}$ (1a) Si I
$\mathbf{B_{7}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $c x_{7} \,\mathbf{\hat{z}}$ (1a) Si II
$\mathbf{B_{8}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $c x_{8} \,\mathbf{\hat{z}}$ (1a) Si III
$\mathbf{B_{9}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $c x_{9} \,\mathbf{\hat{z}}$ (1a) Si IV
$\mathbf{B_{10}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $c x_{10} \,\mathbf{\hat{z}}$ (1a) Si V

References

  • N. W. Thibault, Morphological and Structural Crystallography and Optical Properties of Silicon Carbide (SiC) Part II: Structural Crystallography and Optical Properties, Am. Mineral. 29, 327–362 (1944).
  • P. P. Ewald and K. Herrman, eds., Strukturbericht 1913-1928, vol. I (Akademische Verlagsgesellschaft M. B. H., 1931).

Found in

  • G. L. Harris, ed., Properties of Silicon Carbide (INSPEC, London, 1995).

Prototype Generator

aflow --proto=AB_hR10_160_5a_5a --params=$a,c/a,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9},x_{10}$

Species:

Running:

Output: