AFLOW Prototype: AB_hP6_144_a_a-001
This structure originally had the label AB_hP6_144_a_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/LX4R
or
https://aflow.org/p/AB_hP6_144_a_a-001
or
PDF Version
Prototype | TeZn |
AFLOW prototype label | AB_hP6_144_a_a-001 |
ICSD | 80076 |
Pearson symbol | hP6 |
Space group number | 144 |
Space group symbol | $P3_1$ |
AFLOW prototype command |
aflow --proto=AB_hP6_144_a_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{1} + y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (3a) | Te I |
$\mathbf{B_{2}}$ | = | $- y_{1} \, \mathbf{a}_{1}+\left(x_{1} - y_{1}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{1} - 2 y_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (3a) | Te I |
$\mathbf{B_{3}}$ | = | $- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{1} - y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{1} + 2\right) \,\mathbf{\hat{z}}$ | (3a) | Te I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (3a) | Zn I |
$\mathbf{B_{5}}$ | = | $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (3a) | Zn I |
$\mathbf{B_{6}}$ | = | $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{2} + 2\right) \,\mathbf{\hat{z}}$ | (3a) | Zn I |