Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hP6_144_a_a-001

This structure originally had the label AB_hP6_144_a_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/LX4R
or https://aflow.org/p/AB_hP6_144_a_a-001
or PDF Version

ZnTe (high-pressure) Structure: AB_hP6_144_a_a-001

Picture of Structure; Click for Big Picture
Prototype TeZn
AFLOW prototype label AB_hP6_144_a_a-001
ICSD 80076
Pearson symbol hP6
Space group number 144
Space group symbol $P3_1$
AFLOW prototype command aflow --proto=AB_hP6_144_a_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

  • This structure was determined at 11.5 GPa.
  • This structure can also be found in the enantiomorphic space group $P3_{2}$ #145.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} + y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (3a) Te I
$\mathbf{B_{2}}$ = $- y_{1} \, \mathbf{a}_{1}+\left(x_{1} - y_{1}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} - 2 y_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) Te I
$\mathbf{B_{3}}$ = $- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{1} - y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{1} + 2\right) \,\mathbf{\hat{z}}$ (3a) Te I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (3a) Zn I
$\mathbf{B_{5}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) Zn I
$\mathbf{B_{6}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{2} + 2\right) \,\mathbf{\hat{z}}$ (3a) Zn I

References

  • K. Kusaba and D. J. Weidner, Structure of high pressure phase I in ZnTe, AIP Conference Proceedings 309, 553 (1994), doi:10.1063/1.46096.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=AB_hP6_144_a_a --params=$a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2}$

Species:

Running:

Output: