Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hP16_186_2a2b_2a2b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/W6UW
or https://aflow.org/p/AB_hP16_186_2a2b_2a2b-001
or PDF Version

δ-GaSe Structure: AB_hP16_186_2a2b_2a2b-001

Picture of Structure; Click for Big Picture
Prototype GaSe
AFLOW prototype label AB_hP16_186_2a2b_2a2b-001
ICSD 2002
Pearson symbol hP16
Space group number 186
Space group symbol $P6_3mc$
AFLOW prototype command aflow --proto=AB_hP16_186_2a2b_2a2b-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}$

  • GaSe takes on a variety of structures depending on the stacking of the Ga$_{2}$Se$_{2}$ layers:
  • The origin of the $z$ coordinates is arbitrary in space group $P6_{3}mc$ #186.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Ga I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Ga I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) Ga II
$\mathbf{B_{4}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Ga II
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2a) Se I
$\mathbf{B_{6}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Se I
$\mathbf{B_{7}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (2a) Se II
$\mathbf{B_{8}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Se II
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2b) Ga III
$\mathbf{B_{10}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Ga III
$\mathbf{B_{11}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (2b) Ga IV
$\mathbf{B_{12}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Ga IV
$\mathbf{B_{13}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (2b) Se III
$\mathbf{B_{14}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Se III
$\mathbf{B_{15}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (2b) Se IV
$\mathbf{B_{16}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Se IV

References

  • A. Kuhn, A. Chevy, and R. Chevalier, Crystal Structure and Interatomic Distances in GaSe, phys. stat. sol. (a) 31, 469–475 (1975), doi:10.1002/pssa.2210310216.
  • K. Schubert, E. Dörre, and M. Kluge, Zur Kristallchemie der B-Metalle. III. Kristallstruktur von GaSe und InTe, Z. Metallkd. 46, 216–224 (1955), doi:10.1515/ijmr-1955-460312.

Prototype Generator

aflow --proto=AB_hP16_186_2a2b_2a2b --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6},z_{7},z_{8}$

Species:

Running:

Output: