Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hP12_189_fg_eh-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/PQWK
or https://aflow.org/p/AB_hP12_189_fg_eh-001
or PDF Version

NaO Structure: AB_hP12_189_fg_eh-001

Picture of Structure; Click for Big Picture
Prototype NaO
AFLOW prototype label AB_hP12_189_fg_eh-001
ICSD 25526
Pearson symbol hP12
Space group number 189
Space group symbol $P\overline{6}2m$
AFLOW prototype command aflow --proto=AB_hP12_189_fg_eh-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak z_{4}$

Other compounds with this structure

CaAs,  CaP,  EuAs,  KS,  KSe,  $\alpha$-KTe,  $\alpha$-NaS,  $\beta$-RbS,  RbSe,  RbTc,  SrAs,  SrP


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2e) O I
$\mathbf{B_{2}}$ = $- z_{1} \, \mathbf{a}_{3}$ = $- c z_{1} \,\mathbf{\hat{z}}$ (2e) O I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (3f) Na I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (3f) Na I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (3f) Na I
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) Na II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) Na II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) Na II
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4h) O II
$\mathbf{B_{10}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4h) O II
$\mathbf{B_{11}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4h) O II
$\mathbf{B_{12}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4h) O II

References

  • H. Föppl, Die Kristallstrukturen der Alkaliperoxyde, Z. Anorganische und Allgemeine Chemie 291, 12–50 (1957), doi:10.1002/zaac.19572910104.

Prototype Generator

aflow --proto=AB_hP12_189_fg_eh --params=$a,c/a,z_{1},x_{2},x_{3},z_{4}$

Species:

Running:

Output: