Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC_hP12_174_aj_dk_ej-001

This structure originally had the label ABC_hP12_174_cj_fk_aj. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/4BHM
or https://aflow.org/p/ABC_hP12_174_aj_dk_ej-001
or PDF Version

GdSI Structure: ABC_hP12_174_aj_dk_ej-001

Picture of Structure; Click for Big Picture
Prototype GdIS
AFLOW prototype label ABC_hP12_174_aj_dk_ej-001
ICSD 59203
Pearson symbol hP12
Space group number 174
Space group symbol $P\overline{6}$
AFLOW prototype command aflow --proto=ABC_hP12_174_aj_dk_ej-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}$

Other compounds with this structure

TbSI,  DySI


  • This is a major revision of the previously published version of this page in (Hicks, 2019), however the structure from that page is nearly identical to the structure found here. We have changed our reference from the original (Dagron, 1969) to the more accessible (Beck, 1986).
  • This is a high-pressure phase of GdSI. At ambient pressure it is in the SmSI structure.
  • The ICSD entry for this structure is incomplete, leaving out the (1a), (1d), and (1e) sites, apparently because of a misreading of Table 4 in (Beck, 1968).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Gd I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (1d) I I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (1e) S I
$\mathbf{B_{4}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}$ (3j) Gd II
$\mathbf{B_{5}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (3j) Gd II
$\mathbf{B_{6}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}$ (3j) Gd II
$\mathbf{B_{7}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}$ (3j) S II
$\mathbf{B_{8}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}$ (3j) S II
$\mathbf{B_{9}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}$ (3j) S II
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) I II
$\mathbf{B_{11}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) I II
$\mathbf{B_{12}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) I II

References

  • H. P. Beck and C. Strobel, Zur Hochdruckpolymorphie der Seltenerdsulfidiodide LnSI, Z. Anorganische und Allgemeine Chemie 535, 229–239 (1986), doi:10.1002/zaac.19865350427.
  • C. Dagron and F. Thevet, Répartition des types cristallins dans la série des iodosulfures et fluorosulfures des éléments des terres rares et d'yttrium, C. R. Hebd. Séances Acad. Sci. C 268, 1867–1869 (1969).
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. 161, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=ABC_hP12_174_aj_dk_ej --params=$a,c/a,x_{4},y_{4},x_{5},y_{5},x_{6},y_{6}$

Species:

Running:

Output: