AFLOW Prototype: ABC_cF12_216_a_c_b-001
This structure originally had the label ABC_cF12_216_b_c_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/3BJR
or
https://aflow.org/p/ABC_cF12_216_a_c_b-001
or
PDF Version
Prototype | AgAsMg |
AFLOW prototype label | ABC_cF12_216_a_c_b-001 |
Strukturbericht designation | $C1_{b}$ |
Mineral name | half-heusler |
ICSD | 43819 |
Pearson symbol | cF12 |
Space group number | 216 |
Space group symbol | $F\overline{4}3m$ |
AFLOW prototype command |
aflow --proto=ABC_cF12_216_a_c_b-001
--params=$a$ |
AlBBe, AuMgSn, AuScSn, BiCoZr, BiCuMg, BiLiMg, BiMgNi, BiPdTe, BiPtY, CdCuSb, CdLiP, CoSbTi, CoSbV, CoSbZr, CuMgSb, CuMgSn, CuMnSb, CuSbV, FeSbTi, FeSbV, LiMgSb, LiNZn, LiPZn, MgNiSb, MgPtSn, MnNiSb, NiSbTi, NiSbV, PtScSn, RhSnTi
half–Heuslerstructure because it is identical to the $L2_{1}$ (Heusler) structure, Cu$_{2}$AlMn with half of the copper atoms missing. The Mg and Ag atoms form a rock salt ($B1$) structure, while the As and either the Mg or Ag atoms form a zincblende ($B3$) structure. If the atoms on the (4a) and (4c) sites are identical, this reduces to the fluorite ($C1$) structure.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Ag I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (4b) | Mg I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (4c) | As I |