Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABCD_hP4_187_c_b_a_f-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/84DL
or https://aflow.org/p/ABCD_hP4_187_c_b_a_f-001
or PDF Version

ZrTaNO Structure: ABCD_hP4_187_c_b_a_f-001

Picture of Structure; Click for Big Picture
Prototype NOTaZr
AFLOW prototype label ABCD_hP4_187_c_b_a_f-001
ICSD 76012
Pearson symbol hP4
Space group number 187
Space group symbol $P\overline{6}m2$
AFLOW prototype command aflow --proto=ABCD_hP4_187_c_b_a_f-001
--params=$a, \allowbreak c/a$

  • We have shifted the origin of (Schönberg, 1954) to give the smallest possible Wyckoff indicies.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Ta I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) O I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (1c) N I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (1f) Zr I

References


Prototype Generator

aflow --proto=ABCD_hP4_187_c_b_a_f --params=$a,c/a$

Species:

Running:

Output: