Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC6D15_oP46_51_f_b_2e2i_cef4i2j-001

This structure originally had the label ABC6D15_oP46_51_f_d_2e2i_aef4i2j. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/0JVV
or https://aflow.org/p/ABC6D15_oP46_51_f_b_2e2i_cef4i2j-001
or PDF Version

LiNb$_{6}$O$_{15}$F Structure: ABC6D15_oP46_51_f_b_2e2i_cef4i2j-001

Picture of Structure; Click for Big Picture
Prototype FLiNb$_{6}$O$_{15}$
AFLOW prototype label ABC6D15_oP46_51_f_b_2e2i_cef4i2j-001
ICSD 2910
Pearson symbol oP46
Space group number 51
Space group symbol $Pmma$
AFLOW prototype command aflow --proto=ABC6D15_oP46_51_f_b_2e2i_cef4i2j-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}$

  • (Lundberg, 1965) suggests that the lithium atoms are either on the (2d) site or are statistically distributed on a (4f) site with approximate coordinates (0.08,1/2,0.10). For simplicity we place the atoms on the (2d) site.
  • The X-ray scattering of an F$^-$ ion is almost identical to that of O$^{-2}$, and Lundberg was not able to distinguish between them. She arbitrarily designated the (2f) site she called O$_{4}$ as the location of the fluorine ion and we follow this, but in reality we have no idea if the F$^-$ ions are located on this site, are ordered on another site, or are statistically distributed on the oxygen sites.
  • The ICSD entry does not place the lithium atoms.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}$ (2b) Li I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (2b) Li I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2c) O I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2c) O I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (2e) Nb I
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- c z_{3} \,\mathbf{\hat{z}}$ (2e) Nb I
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (2e) Nb II
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- c z_{4} \,\mathbf{\hat{z}}$ (2e) Nb II
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (2e) O II
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ (2e) O II
$\mathbf{B_{11}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (2f) F I
$\mathbf{B_{12}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (2f) F I
$\mathbf{B_{13}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (2f) O III
$\mathbf{B_{14}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (2f) O III
$\mathbf{B_{15}}$ = $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (4i) Nb III
$\mathbf{B_{16}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (4i) Nb III
$\mathbf{B_{17}}$ = $- x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ (4i) Nb III
$\mathbf{B_{18}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ (4i) Nb III
$\mathbf{B_{19}}$ = $x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (4i) Nb IV
$\mathbf{B_{20}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (4i) Nb IV
$\mathbf{B_{21}}$ = $- x_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ (4i) Nb IV
$\mathbf{B_{22}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ (4i) Nb IV
$\mathbf{B_{23}}$ = $x_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ (4i) O IV
$\mathbf{B_{24}}$ = $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ (4i) O IV
$\mathbf{B_{25}}$ = $- x_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- c z_{10} \,\mathbf{\hat{z}}$ (4i) O IV
$\mathbf{B_{26}}$ = $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- c z_{10} \,\mathbf{\hat{z}}$ (4i) O IV
$\mathbf{B_{27}}$ = $x_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ (4i) O V
$\mathbf{B_{28}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ (4i) O V
$\mathbf{B_{29}}$ = $- x_{11} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- c z_{11} \,\mathbf{\hat{z}}$ (4i) O V
$\mathbf{B_{30}}$ = $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- c z_{11} \,\mathbf{\hat{z}}$ (4i) O V
$\mathbf{B_{31}}$ = $x_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+c z_{12} \,\mathbf{\hat{z}}$ (4i) O VI
$\mathbf{B_{32}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+c z_{12} \,\mathbf{\hat{z}}$ (4i) O VI
$\mathbf{B_{33}}$ = $- x_{12} \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- c z_{12} \,\mathbf{\hat{z}}$ (4i) O VI
$\mathbf{B_{34}}$ = $\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- c z_{12} \,\mathbf{\hat{z}}$ (4i) O VI
$\mathbf{B_{35}}$ = $x_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+c z_{13} \,\mathbf{\hat{z}}$ (4i) O VII
$\mathbf{B_{36}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+c z_{13} \,\mathbf{\hat{z}}$ (4i) O VII
$\mathbf{B_{37}}$ = $- x_{13} \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- c z_{13} \,\mathbf{\hat{z}}$ (4i) O VII
$\mathbf{B_{38}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- c z_{13} \,\mathbf{\hat{z}}$ (4i) O VII
$\mathbf{B_{39}}$ = $x_{14} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (4j) O VIII
$\mathbf{B_{40}}$ = $- \left(x_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (4j) O VIII
$\mathbf{B_{41}}$ = $- x_{14} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (4j) O VIII
$\mathbf{B_{42}}$ = $\left(x_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (4j) O VIII
$\mathbf{B_{43}}$ = $x_{15} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (4j) O IX
$\mathbf{B_{44}}$ = $- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (4j) O IX
$\mathbf{B_{45}}$ = $- x_{15} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (4j) O IX
$\mathbf{B_{46}}$ = $\left(x_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $a \left(x_{15} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (4j) O IX

References


Prototype Generator

aflow --proto=ABC6D15_oP46_51_f_b_2e2i_cef4i2j --params=$a,b/a,c/a,z_{3},z_{4},z_{5},z_{6},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11},x_{12},z_{12},x_{13},z_{13},x_{14},z_{14},x_{15},z_{15}$

Species:

Running:

Output: