AFLOW Prototype: ABC4D_hP84_181_gi_bcf_4k_hj-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/N1MQ
or
https://aflow.org/p/ABC4D_hP84_181_gi_bcf_4k_hj-001
or
PDF Version
Prototype | AlLiO$_{4}$Si |
AFLOW prototype label | ABC4D_hP84_181_gi_bcf_4k_hj-001 |
Mineral name | eucryptite |
ICSD | 22010 |
Pearson symbol | hP84 |
Space group number | 181 |
Space group symbol | $P6_422$ |
AFLOW prototype command |
aflow --proto=ABC4D_hP84_181_gi_bcf_4k_hj-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3b) | Li I |
$\mathbf{B_{2}}$ | = | $\frac{5}{6} \, \mathbf{a}_{3}$ | = | $\frac{5}{6}c \,\mathbf{\hat{z}}$ | (3b) | Li I |
$\mathbf{B_{3}}$ | = | $\frac{1}{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3b) | Li I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ | (3c) | Li II |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (3c) | Li II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (3c) | Li II |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (6f) | Li III |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6f) | Li III |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ | (6f) | Li III |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6f) | Li III |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (6f) | Li III |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ | (6f) | Li III |
$\mathbf{B_{13}}$ | = | $x_{4} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ | (6g) | Al I |
$\mathbf{B_{14}}$ | = | $x_{4} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6g) | Al I |
$\mathbf{B_{15}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6g) | Al I |
$\mathbf{B_{16}}$ | = | $- x_{4} \, \mathbf{a}_{1}$ | = | $- \frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ | (6g) | Al I |
$\mathbf{B_{17}}$ | = | $- x_{4} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6g) | Al I |
$\mathbf{B_{18}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6g) | Al I |
$\mathbf{B_{19}}$ | = | $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6h) | Si I |
$\mathbf{B_{20}}$ | = | $x_{5} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ | (6h) | Si I |
$\mathbf{B_{21}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (6h) | Si I |
$\mathbf{B_{22}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6h) | Si I |
$\mathbf{B_{23}}$ | = | $- x_{5} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ | (6h) | Si I |
$\mathbf{B_{24}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (6h) | Si I |
$\mathbf{B_{25}}$ | = | $x_{6} \, \mathbf{a}_{1}+2 x_{6} \, \mathbf{a}_{2}$ | = | $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}$ | (6i) | Al II |
$\mathbf{B_{26}}$ | = | $- 2 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6i) | Al II |
$\mathbf{B_{27}}$ | = | $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{6} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6i) | Al II |
$\mathbf{B_{28}}$ | = | $- x_{6} \, \mathbf{a}_{1}- 2 x_{6} \, \mathbf{a}_{2}$ | = | $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}$ | (6i) | Al II |
$\mathbf{B_{29}}$ | = | $2 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6i) | Al II |
$\mathbf{B_{30}}$ | = | $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{6} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6i) | Al II |
$\mathbf{B_{31}}$ | = | $x_{7} \, \mathbf{a}_{1}+2 x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6j) | Si II |
$\mathbf{B_{32}}$ | = | $- 2 x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ | (6j) | Si II |
$\mathbf{B_{33}}$ | = | $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{7} \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (6j) | Si II |
$\mathbf{B_{34}}$ | = | $- x_{7} \, \mathbf{a}_{1}- 2 x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6j) | Si II |
$\mathbf{B_{35}}$ | = | $2 x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ | (6j) | Si II |
$\mathbf{B_{36}}$ | = | $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{7} \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (6j) | Si II |
$\mathbf{B_{37}}$ | = | $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{38}}$ | = | $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{39}}$ | = | $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{8} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{40}}$ | = | $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{41}}$ | = | $y_{8} \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{8} + 2 y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{42}}$ | = | $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{8} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{43}}$ | = | $y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{44}}$ | = | $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{45}}$ | = | $- x_{8} \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{8} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{46}}$ | = | $- y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{47}}$ | = | $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{8} + 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{48}}$ | = | $x_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{8} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | O I |
$\mathbf{B_{49}}$ | = | $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{50}}$ | = | $- y_{9} \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} - 2 y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{51}}$ | = | $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{9} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{52}}$ | = | $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{53}}$ | = | $y_{9} \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{9} + 2 y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{54}}$ | = | $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{9} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{55}}$ | = | $y_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{56}}$ | = | $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} - 2 y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{57}}$ | = | $- x_{9} \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{9} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{58}}$ | = | $- y_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{59}}$ | = | $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{9} + 2 y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{60}}$ | = | $x_{9} \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{9} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{61}}$ | = | $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{62}}$ | = | $- y_{10} \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{10} - 2 y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{63}}$ | = | $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{10} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{64}}$ | = | $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{65}}$ | = | $y_{10} \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{10} + 2 y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{66}}$ | = | $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{10} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{67}}$ | = | $y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{68}}$ | = | $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{10} - 2 y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{69}}$ | = | $- x_{10} \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{10} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{70}}$ | = | $- y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{71}}$ | = | $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{10} + 2 y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{72}}$ | = | $x_{10} \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{10} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | O III |
$\mathbf{B_{73}}$ | = | $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{74}}$ | = | $- y_{11} \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{11} - 2 y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{75}}$ | = | $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{11} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{76}}$ | = | $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{77}}$ | = | $y_{11} \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{11} + 2 y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{78}}$ | = | $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{11} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{79}}$ | = | $y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{80}}$ | = | $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{11} - 2 y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{81}}$ | = | $- x_{11} \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{11} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{82}}$ | = | $- y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{83}}$ | = | $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{11} + 2 y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (12k) | O IV |
$\mathbf{B_{84}}$ | = | $x_{11} \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{11} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | O IV |