Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC3_hR5_160_a_a_b-001

This structure originally had the label ABC3_hR5_160_a_a_b.KBrO3. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/0ZSQ
or https://aflow.org/p/ABC3_hR5_160_a_a_b-001
or PDF Version

KBrO$_{3}$ ($G0_{7}$) Structure: ABC3_hR5_160_a_a_b-001

Picture of Structure; Click for Big Picture
Prototype BrKO$_{3}$
AFLOW prototype label ABC3_hR5_160_a_a_b-001
Strukturbericht designation $G0_{7}$
ICSD 47173
Pearson symbol hR5
Space group number 160
Space group symbol $R3m$
AFLOW prototype command aflow --proto=ABC3_hR5_160_a_a_b-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak z_{3}$

Other compounds with this structure

FeBiO$_{3}$,  KNO$_{3}$,  $\gamma$-KNO$_{3}$,  RbNO$_{3}$


  • $\gamma$–KNO$_{3}$ and KBrO$_{3}$ ($G0_{7}$) have the same AFLOW prototype label, ABC3_hR5_160_a_a_b. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.
  • Hexagonal settings rhombohedral structures can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (1a) Br I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (1a) K I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (3b) O I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (3b) O I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (3b) O I

References

  • D. H. Templeton and L. K. Templeton, Tensor X-ray optical properties of the bromate ion, Acta Crystallogr. Sect. A pp. 133–142 (1985), doi:10.1107/S0108767385000277.

Found in

  • D. Santamaría-Pérez, R. Chulia-Jordan, P. Rodríguez-Hernández, and A. M. {n}oz, Crystal behavior of potassium bromate under compression, Acta Crystallogr. Sect. B 71, 798–804 (2015), doi:10.1107/S2052520615018156.

Prototype Generator

aflow --proto=ABC3_hR5_160_a_a_b --params=$a,c/a,x_{1},x_{2},x_{3},z_{3}$

Species:

Running:

Output: