Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC3_hR10_167_a_b_e-002

This structure originally had the label ABC3_hR10_167_a_b_e.CaCO3. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/UVUF
or https://aflow.org/p/ABC3_hR10_167_a_b_e-002
or PDF Version

Calcite (CaCO$_{3}$, $G0_{1}$) Structure: ABC3_hR10_167_a_b_e-002

Picture of Structure; Click for Big Picture
Prototype CCaO$_{3}$
AFLOW prototype label ABC3_hR10_167_a_b_e-002
Strukturbericht designation $G0_{1}$
Mineral name calcite
ICSD 40107
Pearson symbol hR10
Space group number 167
Space group symbol $R\overline{3}c$
AFLOW prototype command aflow --proto=ABC3_hR10_167_a_b_e-002
--params=$a, \allowbreak c/a, \allowbreak x_{3}$

Other compounds with this structure

AlBO$_{3}$,  (Ca,  Mn)CO$_{3}$ (kutnohorite,   rhodocrosite),  CdCO$_{3}$ (otavite),  (Cd,  Mg)CO$_{3}$ (otavite),  CoCO$_{3}$ (spherocobaltite),  CuCO$_{3}$,  FeCO$_{3}$ (siderite),  InBO$_{3}$,  (La,  Na)O$_{3}$ (loparite),  LaNiO$_{3}$,  MgCO$_{3}$ (magnesite),  MnCO$_{3}$ (rhodochrosite),  NaNO$_{3}$ (nitratine),  NiCO$_{3}$ (gaspeite),  ZnCO$_{3}$ (smithsonite)


  • Strukturbericht Band I, (Ewald, 1931) pp.292-295, gives this the designation $G1$, but the index in Band II (Hermann, 1937) lists this as $G0_{1}$.
  • CaCO$_{3}$ can also be found in the form of monoclinic or hexagonal vaterite. These two structures can coexist.
  • Paraelectric LiNbO$_{3}$ and calcite CaCO$_{3}$ have the same AFLOW prototype label, ABC3_hR10_167_a_b_e. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.
  • Hexagonal settings rhombohedral structures can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{3}}$ = $0$ = $0$ (2b) Ca I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Ca I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{7}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{3} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{3} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{9}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{3} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{10}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O I

References

  • S. A. Markgraf and R. J. Reeder, High-temperature structure refinements of calcite and magnesite, Am. Mineral. 70, 590–600 (1985).
  • P. P. Ewald and C. Hermann, eds., Strukturbericht 1913-1928 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1931).
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=ABC3_hR10_167_a_b_e --params=$a,c/a,x_{3}$

Species:

Running:

Output: