AFLOW Prototype: ABC2_hP8_194_a_c_f-005
This structure originally had the label ABC2_hP8_194_a_c_f. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/Y6AL
or
https://aflow.org/p/ABC2_hP8_194_a_c_f-005
or
PDF Version
Prototype | CuFeO$_{2}$ |
AFLOW prototype label | ABC2_hP8_194_a_c_f-005 |
Mineral name | delafossite |
ICSD | 60845 |
Pearson symbol | hP8 |
Space group number | 194 |
Space group symbol | $P6_3/mmc$ |
AFLOW prototype command |
aflow --proto=ABC2_hP8_194_a_c_f-005
--params=$a, \allowbreak c/a, \allowbreak z_{3}$ |
AlCCr$_{2}$, AlCNb$_{2}$, AlCTa$_{2}$, AlCTi$_{2}$, AlCV$_{2}$, AsCNb$_{2}$, AsCV$_{2}$, AlCuO$_{2}$, BBiHf$_{2}$, BPbHf$_{2}$, CdCTi$_{2}$, CuAlO$_{2}$, CuGaO$_{2}$, CuScO$_{2}$, CuYO$_{2}$, GaCCr$_{2}$, GaCMo$_{2}$, GaCNb$_{2}$, GaCTa$_{2}$, GaCTi$_{2}$, GaCV$_{2}$, GaNTi$_{2}$, GeCCr$_{2}$, GeCTi$_{2}$, GeCV$_{2}$, InCHf$_{2}$, InCNb$_{2}$, InCTi$_{2}$, InCZr$_{2}$, InNTi$_{2}$, InNZr$_{2}$, PbCHf$_{2}$, PbCTi$_{2}$, PbCZr$_{2}$, SCNb$_{2}$, SCTi$_{2}$, SCZr$_{2}$, SCZr$_{2}$, SeCZr$_{2}$, SnCHf$_{2}$, SnCNb$_{2}$, SnCZr$_{2}$, TlCHf$_{2}$, TlCTi$_{2}$, TlCZr$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2a) | Al I |
$\mathbf{B_{3}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2c) | Cu I |
$\mathbf{B_{4}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2c) | Cu I |
$\mathbf{B_{5}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4f) | O I |
$\mathbf{B_{6}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | O I |
$\mathbf{B_{7}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (4f) | O I |
$\mathbf{B_{8}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | O I |