Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB6C_hR8_148_a_f_b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/7RW9
or https://aflow.org/p/AB6C_hR8_148_a_f_b-001
or PDF Version

β-CuZrF$_{6}$ Structure: AB6C_hR8_148_a_f_b-001

Picture of Structure; Click for Big Picture
Prototype CuF$_{6}$Zr
AFLOW prototype label AB6C_hR8_148_a_f_b-001
ICSD 30116
Pearson symbol hR8
Space group number 148
Space group symbol $R\overline{3}$
AFLOW prototype command aflow --proto=AB6C_hR8_148_a_f_b-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

  • CuZrF$_{6}$ exists in four forms, depending on the temperature. Structures below 500K show evidence of a Jahn-Teller distortion.
    • $\alpha'$–CuZrF$_{6}$ is the high temperature cubic form. Evidence from (Propach, 1978) shows this to be stable above $≈ 450$K. We use the lattice constant at 500K.
    • $\alpha$–CuZrF$_{6}$ is stable above 383K. The fluorine (6f) sites are doubled, with only one of each pair occupied. We use data taken at 393K.
    • $\beta$–CuZrF$_{6}$ (this structure) is stable between 353 and 383K. In this case the Jahn-Teller distortion is locked in, so there are only six fluorine sites, all fully occupied.
    • $\gamma$–CuZrF$_{6}$ is stable below 353K. Again each fluorine site is only half-filled.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) Zr I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) F I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) F I
$\mathbf{B_{5}}$ = $y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) F I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) F I
$\mathbf{B_{7}}$ = $- z_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) F I
$\mathbf{B_{8}}$ = $- y_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) F I

References

  • V. Propach and F. Steffens, Über die Strukturen der CuZrF$_{6}$-Modifikationen - Neutronenbeugungsuntersuchungen an den Kristallpulvern, Z. Krystallogr. 33, 268–274 (1978), doi:10.1515/znb-1978-0304.

Prototype Generator

aflow --proto=AB6C_hR8_148_a_f_b --params=$a,c/a,x_{3},y_{3},z_{3}$

Species:

Running:

Output: