AFLOW Prototype: AB4C2_hR7_166_a_2c_c-001
This structure originally had the label AB4C2_hR7_166_a_2c_c. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/SFS1
or
https://aflow.org/p/AB4C2_hR7_166_a_2c_c-001
or
PDF Version
Prototype | CaCu$_{4}$P$_{2}$ |
AFLOW prototype label | AB4C2_hR7_166_a_2c_c-001 |
ICSD | 23251 |
Pearson symbol | hR7 |
Space group number | 166 |
Space group symbol | $R\overline{3}m$ |
AFLOW prototype command |
aflow --proto=AB4C2_hR7_166_a_2c_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}$ |
BaAg$_{4}$As$_{2}$, CaAg$_{4}$As$_{2}$, EuAg$_{4}$As$_{2}$, EuAg$_{4}$Sb$_{2}$, SrAg$_{4}$As$_{2}$, SrAg$_{4}$Sb$_{2}$, ZrLi$_{4}$Ge$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ca I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $c x_{2} \,\mathbf{\hat{z}}$ | (2c) | Cu I |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $- c x_{2} \,\mathbf{\hat{z}}$ | (2c) | Cu I |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Cu II |
$\mathbf{B_{5}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Cu II |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $c x_{4} \,\mathbf{\hat{z}}$ | (2c) | P I |
$\mathbf{B_{7}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- c x_{4} \,\mathbf{\hat{z}}$ | (2c) | P I |