AFLOW Prototype: AB3_hR8_155_c_de-001
This structure originally had the label AB3_hR8_155_c_de. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/QG2U
or
https://aflow.org/p/AB3_hR8_155_c_de-001
or
PDF Version
Prototype | AlF$_{3}$ |
AFLOW prototype label | AB3_hR8_155_c_de-001 |
Strukturbericht designation | $D0_{14}$ |
ICSD | 30274 |
Pearson symbol | hR8 |
Space group number | 155 |
Space group symbol | $R32$ |
AFLOW prototype command |
aflow --proto=AB3_hR8_155_c_de-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{2}, \allowbreak y_{3}$ |
FeF$_{3}$
--hex
. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $c x_{1} \,\mathbf{\hat{z}}$ | (2c) | Al I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $- c x_{1} \,\mathbf{\hat{z}}$ | (2c) | Al I |
$\mathbf{B_{3}}$ | = | $y_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a y_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}$ | (3d) | F I |
$\mathbf{B_{4}}$ | = | $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}$ | (3d) | F I |
$\mathbf{B_{5}}$ | = | $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a y_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}$ | (3d) | F I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \left(2 y_{3} + 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \left(6 y_{3} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3e) | F II |
$\mathbf{B_{7}}$ | = | $- y_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3e) | F II |
$\mathbf{B_{8}}$ | = | $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \left(2 y_{3} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \left(6 y_{3} + 1\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3e) | F II |