Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3_hR12_166_ac_eh-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/NHXQ
or https://aflow.org/p/AB3_hR12_166_ac_eh-001
or PDF Version

BaPb$_{3}$ Structure: AB3_hR12_166_ac_eh-001

Picture of Structure; Click for Big Picture
Prototype BaPb$_{3}$
AFLOW prototype label AB3_hR12_166_ac_eh-001
ICSD 58665
Pearson symbol hR12
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=AB3_hR12_166_ac_eh-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{4}, \allowbreak z_{4}$

Other compounds with this structure

GdAl$_{3}$,  PuAl$_{3}$,  TbAl$_{3}$,  YAl$_{3}$


  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Ba I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Ba II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Ba II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) Pb I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) Pb I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) Pb I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Pb II
$\mathbf{B_{8}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Pb II
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Pb II
$\mathbf{B_{10}}$ = $- z_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Pb II
$\mathbf{B_{11}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Pb II
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Pb II

References

  • D. E. Sands, D. H. Wood, and W. J. Ramsey, The structures of Ba$_{5}$Pb$_{3}$, BaPb and BaPb$_{3}$, Acta Cryst. 17, 986–989 (1964), doi:10.1107/S0365110X64002547.

Found in

  • M. Langenmaier, M. Jehle, and C. Röhr, Mixed Sr and Ba Tri-Stannides/Plumbides A$^{II}$(Sn$_{1−x}$Pb$_{x}$)$_{3}$, Crystals 8, 204 (2018), doi:10.3390/cryst8050204.

Prototype Generator

aflow --proto=AB3_hR12_166_ac_eh --params=$a,c/a,x_{2},x_{4},z_{4}$

Species:

Running:

Output: