AFLOW Prototype: AB3_hP8_182_c_g-001
This structure originally had the label AB3_hP8_182_c_g. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/JRHU
or
https://aflow.org/p/AB3_hP8_182_c_g-001
or
PDF Version
Prototype | Fe$_{3}$C |
AFLOW prototype label | AB3_hP8_182_c_g-001 |
Mineral name | bainite |
ICSD | none |
Pearson symbol | hP8 |
Space group number | 182 |
Space group symbol | $P6_322$ |
AFLOW prototype command |
aflow --proto=AB3_hP8_182_c_g-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}$ |
$\epsilon$-Fe$_{3}$N
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2c) | C I |
$\mathbf{B_{2}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2c) | C I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ | (6g) | Fe I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ | (6g) | Fe I |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (6g) | Fe I |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6g) | Fe I |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6g) | Fe I |
$\mathbf{B_{8}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6g) | Fe I |