AFLOW Prototype: AB3_hP24_178_b_ac-001
This structure originally had the label AB3_hP24_178_b_ac. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/UBNE
or
https://aflow.org/p/AB3_hP24_178_b_ac-001
or
PDF Version
Prototype | AuF$_{3}$ |
AFLOW prototype label | AB3_hP24_178_b_ac-001 |
ICSD | 80478 |
Pearson symbol | hP24 |
Space group number | 178 |
Space group symbol | $P6_122$ |
AFLOW prototype command |
aflow --proto=AB3_hP24_178_b_ac-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$ |
AgF$_{3}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}$ | (6a) | F I |
$\mathbf{B_{2}}$ | = | $x_{1} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6a) | F I |
$\mathbf{B_{3}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6a) | F I |
$\mathbf{B_{4}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6a) | F I |
$\mathbf{B_{5}}$ | = | $- x_{1} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ | (6a) | F I |
$\mathbf{B_{6}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (6a) | F I |
$\mathbf{B_{7}}$ | = | $x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6b) | Au I |
$\mathbf{B_{8}}$ | = | $- 2 x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{7}{12} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{7}{12}c \,\mathbf{\hat{z}}$ | (6b) | Au I |
$\mathbf{B_{9}}$ | = | $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{11}{12} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{11}{12}c \,\mathbf{\hat{z}}$ | (6b) | Au I |
$\mathbf{B_{10}}$ | = | $- x_{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6b) | Au I |
$\mathbf{B_{11}}$ | = | $2 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{12} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{12}c \,\mathbf{\hat{z}}$ | (6b) | Au I |
$\mathbf{B_{12}}$ | = | $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{5}{12} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6b) | Au I |
$\mathbf{B_{13}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{14}}$ | = | $- y_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{15}}$ | = | $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{16}}$ | = | $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{17}}$ | = | $y_{3} \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{5}{6}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{3} + 2 y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{6}c \left(6 z_{3} + 5\right) \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{18}}$ | = | $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{6}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{6}\right) \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{19}}$ | = | $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{20}}$ | = | $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{21}}$ | = | $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{22}}$ | = | $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{5}{6}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(6 z_{3} - 5\right) \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{23}}$ | = | $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{3} + 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12c) | F II |
$\mathbf{B_{24}}$ | = | $x_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{6}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{6}\right) \,\mathbf{\hat{z}}$ | (12c) | F II |