Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3C_hP45_144_3a_9a_3a-001

This structure originally had the label AB3C_hP45_144_3a_9a_3a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/UV9A
or https://aflow.org/p/AB3C_hP45_144_3a_9a_3a-001
or PDF Version

RbNO$_{3}$ (IV) Structure: AB3C_hP45_144_3a_9a_3a-001

Picture of Structure; Click for Big Picture
Prototype NO$_{3}$Rb
AFLOW prototype label AB3C_hP45_144_3a_9a_3a-001
ICSD 35102
Pearson symbol hP45
Space group number 144
Space group symbol $P3_1$
AFLOW prototype command aflow --proto=AB3C_hP45_144_3a_9a_3a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}$

Other compounds with this structure

CsNO$_{3}$ (II),  TlNO$_{3}$ (III)


  • RbNO$_{3}$ takes on four distinct phases with increasing temperature (Shamsuzzoha, 1988).
    • Phase IV, presented here, is the ground state, stable up to 437K.
    • Phase III, stable in the range 437-492K, is in the cesium chloride ($B2)$ structure, with rubidium atoms on the cesium sites and orientationally disordered NO$_{3}$ ions on the chlorine sites.
    • Phase II, stable up to 564K, is possibly a body-centered cubic structure with up to eight formula units in the conventional unit cell.
    • Phase I, stable up to the melting point, is thought to be a sodium chloride ($B1$) structure, with NO$_{3}$ again playing the role of chlorine.
  • The phase IV structure also exists in the enantiomorphic space group $P3_{2}$ #145. (Shamsuzzoha, 1982)
  • We used the data taken at room temperature, 298K.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} + y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (3a) N I
$\mathbf{B_{2}}$ = $- y_{1} \, \mathbf{a}_{1}+\left(x_{1} - y_{1}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} - 2 y_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) N I
$\mathbf{B_{3}}$ = $- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{1} - y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{1} + 2\right) \,\mathbf{\hat{z}}$ (3a) N I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (3a) N II
$\mathbf{B_{5}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) N II
$\mathbf{B_{6}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{2} + 2\right) \,\mathbf{\hat{z}}$ (3a) N II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (3a) N III
$\mathbf{B_{8}}$ = $- y_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) N III
$\mathbf{B_{9}}$ = $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ (3a) N III
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (3a) O I
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) O I
$\mathbf{B_{12}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{4} + 2\right) \,\mathbf{\hat{z}}$ (3a) O I
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (3a) O II
$\mathbf{B_{14}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) O II
$\mathbf{B_{15}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{5} + 2\right) \,\mathbf{\hat{z}}$ (3a) O II
$\mathbf{B_{16}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (3a) O III
$\mathbf{B_{17}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) O III
$\mathbf{B_{18}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{6} + 2\right) \,\mathbf{\hat{z}}$ (3a) O III
$\mathbf{B_{19}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (3a) O IV
$\mathbf{B_{20}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) O IV
$\mathbf{B_{21}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{7} + 2\right) \,\mathbf{\hat{z}}$ (3a) O IV
$\mathbf{B_{22}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (3a) O V
$\mathbf{B_{23}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) O V
$\mathbf{B_{24}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{8} + 2\right) \,\mathbf{\hat{z}}$ (3a) O V
$\mathbf{B_{25}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (3a) O VI
$\mathbf{B_{26}}$ = $- y_{9} \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - 2 y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) O VI
$\mathbf{B_{27}}$ = $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{9} + 2\right) \,\mathbf{\hat{z}}$ (3a) O VI
$\mathbf{B_{28}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (3a) O VII
$\mathbf{B_{29}}$ = $- y_{10} \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - 2 y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) O VII
$\mathbf{B_{30}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{10} + 2\right) \,\mathbf{\hat{z}}$ (3a) O VII
$\mathbf{B_{31}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (3a) O VIII
$\mathbf{B_{32}}$ = $- y_{11} \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - 2 y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) O VIII
$\mathbf{B_{33}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{11} + 2\right) \,\mathbf{\hat{z}}$ (3a) O VIII
$\mathbf{B_{34}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (3a) O IX
$\mathbf{B_{35}}$ = $- y_{12} \, \mathbf{a}_{1}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - 2 y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) O IX
$\mathbf{B_{36}}$ = $- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{12} + 2\right) \,\mathbf{\hat{z}}$ (3a) O IX
$\mathbf{B_{37}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (3a) Rb I
$\mathbf{B_{38}}$ = $- y_{13} \, \mathbf{a}_{1}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - 2 y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) Rb I
$\mathbf{B_{39}}$ = $- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{13} + 2\right) \,\mathbf{\hat{z}}$ (3a) Rb I
$\mathbf{B_{40}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (3a) Rb II
$\mathbf{B_{41}}$ = $- y_{14} \, \mathbf{a}_{1}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - 2 y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) Rb II
$\mathbf{B_{42}}$ = $- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{14} + 2\right) \,\mathbf{\hat{z}}$ (3a) Rb II
$\mathbf{B_{43}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (3a) Rb III
$\mathbf{B_{44}}$ = $- y_{15} \, \mathbf{a}_{1}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - 2 y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (3a) Rb III
$\mathbf{B_{45}}$ = $- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{15} + 2\right) \,\mathbf{\hat{z}}$ (3a) Rb III

References

  • M. Shamsuzzoha and B. W. Lucas, Structure (neutron) of phase IV rubidium nitrate at 298 and 403 K, Acta Crystallogr. Sect. B 38, 2353–2357 (1982), doi:10.1107/S0567740882008772.
  • M. Shamsuzzoha and B. W. Lucas, Polymorphs of rubidium nitrate and their crystallographic relationships, Canadian Journal of Chemistry 66, 819–823 (1988), doi:10.1139/v88-142.

Prototype Generator

aflow --proto=AB3C_hP45_144_3a_9a_3a --params=$a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15}$

Species:

Running:

Output: