Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C_oF64_70_e_h_ab-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/1RMB
or https://aflow.org/p/AB2C_oF64_70_e_h_ab-001
or PDF Version

RbVSe$_{2}$ Structure: AB2C_oF64_70_e_h_ab-001

Picture of Structure; Click for Big Picture
Prototype RbSe$_{2}$V
AFLOW prototype label AB2C_oF64_70_e_h_ab-001
ICSD 415479
Pearson symbol oF64
Space group number 70
Space group symbol $Fddd$
AFLOW prototype command aflow --proto=AB2C_oF64_70_e_h_ab-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

  • Data for this structure was taken at 153K.
  • We wish to thank Petra Lipsky, FIZ Karlsruhe - Leibniz-Institut für Informationsinfrastruktur, who provided us with the data referenced in (Deng, 2005). For more information about the FIZ Karlsruhe archive, see FIZ Karlsruhe.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8a) V I
$\mathbf{B_{2}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}b \,\mathbf{\hat{y}}+\frac{7}{8}c \,\mathbf{\hat{z}}$ (8a) V I
$\mathbf{B_{3}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}b \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (8b) V II
$\mathbf{B_{4}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8b) V II
$\mathbf{B_{5}}$ = $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16e) Rb I
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16e) Rb I
$\mathbf{B_{7}}$ = $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16e) Rb I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16e) Rb I
$\mathbf{B_{9}}$ = $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (32h) Se I
$\mathbf{B_{10}}$ = $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (32h) Se I
$\mathbf{B_{11}}$ = $\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32h) Se I
$\mathbf{B_{12}}$ = $- \left(x_{4} + y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32h) Se I
$\mathbf{B_{13}}$ = $\left(x_{4} - y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (32h) Se I
$\mathbf{B_{14}}$ = $- \left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (32h) Se I
$\mathbf{B_{15}}$ = $- \left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32h) Se I
$\mathbf{B_{16}}$ = $\left(x_{4} + y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32h) Se I

References

  • B. Deng, F. Q. Huang, D. E. Ellis, and J. A. Ibers, Synthesis, crystal structure, and electronic structure of RbVSe$_{2}$, J. Solid State Chem. 178, 3251–3255 (2005), doi:10.1016/j.jssc.2005.08.004.

Prototype Generator

aflow --proto=AB2C_oF64_70_e_h_ab --params=$a,b/a,c/a,x_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: