AFLOW Prototype: AB2C_oF64_70_e_h_ab-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/1RMB
or
https://aflow.org/p/AB2C_oF64_70_e_h_ab-001
or
PDF Version
Prototype | RbSe$_{2}$V |
AFLOW prototype label | AB2C_oF64_70_e_h_ab-001 |
ICSD | 415479 |
Pearson symbol | oF64 |
Space group number | 70 |
Space group symbol | $Fddd$ |
AFLOW prototype command |
aflow --proto=AB2C_oF64_70_e_h_ab-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8a) | V I |
$\mathbf{B_{2}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ | = | $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}b \,\mathbf{\hat{y}}+\frac{7}{8}c \,\mathbf{\hat{z}}$ | (8a) | V I |
$\mathbf{B_{3}}$ | = | $\frac{5}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ | = | $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}b \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ | (8b) | V II |
$\mathbf{B_{4}}$ | = | $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8b) | V II |
$\mathbf{B_{5}}$ | = | $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Rb I |
$\mathbf{B_{6}}$ | = | $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Rb I |
$\mathbf{B_{7}}$ | = | $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Rb I |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Rb I |
$\mathbf{B_{9}}$ | = | $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (32h) | Se I |
$\mathbf{B_{10}}$ | = | $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (32h) | Se I |
$\mathbf{B_{11}}$ | = | $\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32h) | Se I |
$\mathbf{B_{12}}$ | = | $- \left(x_{4} + y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32h) | Se I |
$\mathbf{B_{13}}$ | = | $\left(x_{4} - y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (32h) | Se I |
$\mathbf{B_{14}}$ | = | $- \left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (32h) | Se I |
$\mathbf{B_{15}}$ | = | $- \left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32h) | Se I |
$\mathbf{B_{16}}$ | = | $\left(x_{4} + y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32h) | Se I |