Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B_hP27_180_2ik_d-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/T338
or https://aflow.org/p/A8B_hP27_180_2ik_d-001
or PDF Version

CsC$_{8}$ Structure: A8B_hP27_180_2ik_d-001

Picture of Structure; Click for Big Picture
Prototype C$_{8}$Cs
AFLOW prototype label A8B_hP27_180_2ik_d-001
ICSD none
Pearson symbol hP27
Space group number 180
Space group symbol $P6_222$
AFLOW prototype command aflow --proto=A8B_hP27_180_2ik_d-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

  • This is the ambient pressure structure structure of CsC$_{8}$. Above 1.2 GPa it transforms into an orthorhombic structure which was not determined by (Rey, 2008). Further transitions occur at higher temperatures.
  • This compound can also be found in the enantiomorphic space group $P6_{4}22$ #181. To make this transition, reflect the structure through the $z = 0$ plane.
  • We found no entry in the ICSD or the CCDC for this structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3d) Cs I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) Cs I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ (3d) Cs I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (6i) C I
$\mathbf{B_{5}}$ = $- 2 x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) C I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) C I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (6i) C I
$\mathbf{B_{8}}$ = $2 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) C I
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) C I
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (6i) C II
$\mathbf{B_{11}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) C II
$\mathbf{B_{12}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) C II
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (6i) C II
$\mathbf{B_{14}}$ = $2 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) C II
$\mathbf{B_{15}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) C II
$\mathbf{B_{16}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{17}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{4} + 2\right) \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{18}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{19}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{20}}$ = $y_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{4} + 2\right) \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{21}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{22}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{4} - 2\right) \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{23}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{24}}$ = $- x_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{25}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{4} - 2\right) \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{26}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (12k) C III
$\mathbf{B_{27}}$ = $x_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (12k) C III

References

  • N. Rey, P. Toulemonde, D. Machon, L. Duclaux, S. L. Floch, V. Pischedda, J. P. Itié, A.-M. Flank, P. Lagarde, W. A. Crichton, M. Mezouar, T. Strässle, D. Sheptyakov, G. Montagnac, and A. San-Miguel, High-pressure behavior of CsC$_{8}$ graphite intercalation compound: Lattice structures and phase-transition mechanism, Phys. Rev. B 77, 125433 (2008), doi:10.1103/PhysRevB.77.125433.

Prototype Generator

aflow --proto=A8B_hP27_180_2ik_d --params=$a,c/a,x_{2},x_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: