Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B3_hR11_166_4c_ac-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/758U
or https://aflow.org/p/A8B3_hR11_166_4c_ac-001
or PDF Version

Li$_{8}$Pb$_{2}$ Structure: A8B3_hR11_166_4c_ac-001

Picture of Structure; Click for Big Picture
Prototype Li$_{8}$Pb$_{2}$
AFLOW prototype label A8B3_hR11_166_4c_ac-001
ICSD 15694
Pearson symbol hR11
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A8B3_hR11_166_4c_ac-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$

  • (Zalkin, 1956) put this structure in space group $C2/m$ #12, but the positions are consistent with rhombohedral space group $R\overline{3}m$ #166, and we use the higher symmetry group. It is possible that refinement of the structure will move some atoms and restore the monoclinic symmetry, but we have not seen a reference to any further work.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Pb I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Li I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Li I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Li II
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Li II
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (2c) Li III
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- c x_{4} \,\mathbf{\hat{z}}$ (2c) Li III
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $c x_{5} \,\mathbf{\hat{z}}$ (2c) Li IV
$\mathbf{B_{9}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- c x_{5} \,\mathbf{\hat{z}}$ (2c) Li IV
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $c x_{6} \,\mathbf{\hat{z}}$ (2c) Pb II
$\mathbf{B_{11}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- c x_{6} \,\mathbf{\hat{z}}$ (2c) Pb II

References

  • A. Zalkin, W. J. Ramsey, and D. H. Templeton, Intermetallic Compounds between Lithium and Lead. II. The Crystal Structure of Li$_{8}$Pb$_{3}$, J. Phys. Chem. 60, 1275–1277 (1956), doi:10.1021/j150543a030.

Found in

  • A. Jain, S. Ping, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials 1, 011002 (2013), doi:10.1063/1.4812323.

Prototype Generator

aflow --proto=A8B3_hR11_166_4c_ac --params=$a,c/a,x_{2},x_{3},x_{4},x_{5},x_{6}$

Species:

Running:

Output: