AFLOW Prototype: A8B3_hR11_166_4c_ac-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/758U
or
https://aflow.org/p/A8B3_hR11_166_4c_ac-001
or
PDF Version
Prototype | Li$_{8}$Pb$_{2}$ |
AFLOW prototype label | A8B3_hR11_166_4c_ac-001 |
ICSD | 15694 |
Pearson symbol | hR11 |
Space group number | 166 |
Space group symbol | $R\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A8B3_hR11_166_4c_ac-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$ |
--hex
. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Pb I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $c x_{2} \,\mathbf{\hat{z}}$ | (2c) | Li I |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $- c x_{2} \,\mathbf{\hat{z}}$ | (2c) | Li I |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Li II |
$\mathbf{B_{5}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Li II |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $c x_{4} \,\mathbf{\hat{z}}$ | (2c) | Li III |
$\mathbf{B_{7}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- c x_{4} \,\mathbf{\hat{z}}$ | (2c) | Li III |
$\mathbf{B_{8}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $c x_{5} \,\mathbf{\hat{z}}$ | (2c) | Li IV |
$\mathbf{B_{9}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- c x_{5} \,\mathbf{\hat{z}}$ | (2c) | Li IV |
$\mathbf{B_{10}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $c x_{6} \,\mathbf{\hat{z}}$ | (2c) | Pb II |
$\mathbf{B_{11}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- c x_{6} \,\mathbf{\hat{z}}$ | (2c) | Pb II |