Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B3C4_hR15_166_4c_ac_2c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/HGYT
or https://aflow.org/p/A8B3C4_hR15_166_4c_ac_2c-001
or PDF Version

Al$_{8}$C$_{3}$N$_{4}$ Structure: A8B3C4_hR15_166_4c_ac_2c-001

Picture of Structure; Click for Big Picture
Prototype Al$_{8}$C$_{3}$N$_{4}$
AFLOW prototype label A8B3C4_hR15_166_4c_ac_2c-001
ICSD 43861, 41261
Pearson symbol hR15
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A8B3C4_hR15_166_4c_ac_2c-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}$

  • (Jeffrey, 1966) put this structure in space group $R\overline{3}m$ #166, but put one carbon atom at the (1a) Wyckoff position and 14 atoms on (2c) sites. This would put 29 atoms in the primitive cell, violating the claimed stoichiometry. In addition, as (Villars, 1999) points out, the atoms are much too close together, making the structure unphysical.
  • We could make the assumption that the space group was actually $R3m$ #160. In that case the atoms are all on (1a) sites and the stoichiometry is correct, at the cost of losing the inversion symmetry from the $R\overline{3}m$ space group.
  • (Daams, 1993) resolve this by replacing pairs of atoms (in the $R\overline{3}$m setting) which are too close together by a single atom at the midpoint between them. This gives the proper symmetry and stoichiometry, and so we follow them here.
  • ICSD entry #41261 is from (Jeffrey, 1966). ICSD entry #43861 is said to be from (Suzuki, 1993), but is better associated with (Daams, 1993).
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) C I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Al I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Al I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Al II
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Al II
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (2c) Al III
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- c x_{4} \,\mathbf{\hat{z}}$ (2c) Al III
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $c x_{5} \,\mathbf{\hat{z}}$ (2c) Al IV
$\mathbf{B_{9}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- c x_{5} \,\mathbf{\hat{z}}$ (2c) Al IV
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $c x_{6} \,\mathbf{\hat{z}}$ (2c) C II
$\mathbf{B_{11}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- c x_{6} \,\mathbf{\hat{z}}$ (2c) C II
$\mathbf{B_{12}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $c x_{7} \,\mathbf{\hat{z}}$ (2c) N I
$\mathbf{B_{13}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- c x_{7} \,\mathbf{\hat{z}}$ (2c) N I
$\mathbf{B_{14}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $c x_{8} \,\mathbf{\hat{z}}$ (2c) N II
$\mathbf{B_{15}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- c x_{8} \,\mathbf{\hat{z}}$ (2c) N II

References

  • G. A. Jeffrey and V. Y. Wu, The structure of the aluminum carbonitrides. II, Acta Cryst. 20, 538–547 (1966), doi:10.1107/S0365110X66001208.
  • J. L. C. Daams and P. Villars, Atomic environment classification of the rhombohedral intermetallic structure types, J. Alloys Compd. 197, 243–269 (1993), doi:10.1016/0925-8388(93)90046-P.
  • K. Suzuki, H. Morita, T. Kaneko, H. Yoshida, and H. Fujimori, Crystal structure and magnetic properties of the compound FeN, J. Alloys Compd. 201, 11–16 (1993), doi:10.1016/0925-8388(93)90854-G.

Found in

  • D. Urushihara, M. Kaga, T. Asaka, H. Nakano, and K. Fukuda, Synthesis and structural characterization of Al$_{7}$C$_{3}$N$_{3}$-homeotypic aluminum silicon oxycarbonitride, (Al$_{7-x}$Si$_{x}$)(O$_{y}$C$_{z}$N$_{6-y-z}$) ($x \sim 1.2$, $y \sim 1.0$ and $z \sim 3.5$), J. Solid State Chem. 184, 2278–2284 (2011), doi:10.1016/j.jssc.2011.06.030.

Prototype Generator

aflow --proto=A8B3C4_hR15_166_4c_ac_2c --params=$a,c/a,x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8}$

Species:

Running:

Output: