Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7BC12_cI40_204_bc_a_g-001

This structure originally had the label A7BC12_cI40_204_bc_a_g. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/M5NA
or https://aflow.org/p/A7BC12_cI40_204_bc_a_g-001
or PDF Version

NaMn$_{7}$O$_{12}$ Structure: A7BC12_cI40_204_bc_a_g-001

Picture of Structure; Click for Big Picture
Prototype Mn$_{7}$NaO$_{12}$
AFLOW prototype label A7BC12_cI40_204_bc_a_g-001
ICSD 154189
Pearson symbol cI40
Space group number 204
Space group symbol $Im\overline{3}$
AFLOW prototype command aflow --proto=A7BC12_cI40_204_bc_a_g-001
--params=$a, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

SrMn$_{7}$O$_{12}$


  • This is a double perovskite structure. It is stable above 3GBar and above room temperature, but is metastable under ambient conditions (Gilioli 2005ab). The actual composition of the measured sample is Na$_{0.95}$Mn$_{7.05}$O$_{12}$, with the excess manganese displacing some of the sodium atoms on the (2a) site.
  • The (6b) and (6c) sites may be populated by two species of atoms. In that case we get the quaternary form of this structure, prototype CaCu$_{3}$Mn$_{4}$O$_{12}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Na I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (6b) Mn I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (6b) Mn I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Mn I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Mn II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Mn II
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Mn II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Mn II
$\mathbf{B_{9}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{10}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{11}}$ = $\left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{12}}$ = $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{13}}$ = $y_{4} \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{14}}$ = $- y_{4} \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{15}}$ = $y_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{16}}$ = $- y_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{17}}$ = $z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24g) O I
$\mathbf{B_{18}}$ = $z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24g) O I
$\mathbf{B_{19}}$ = $- z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24g) O I
$\mathbf{B_{20}}$ = $- z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24g) O I

References

  • E. Gilioli, G. Calestani, F. Licci, A. Gauzzi, F. Bolzoni, A. Prodi, and M. Marezio, $P-T$ phase diagram and single crystal structural refinement of NaMn$_{7}$O$_{12}$, Solid State Sci. 7, 746–752 (2005), doi:10.1016/j.solidstatesciences.2004.11.020.

Found in

  • E. Gilioli, F. Licci, G. Calestani, A. Prodi, A. Gauzzi, and G. Salviati, Crystal growth and structural refinement of NaMn$_{7}$O$_{12}$, Crys. Res. Technol. 40, 1072–1075 (2005), doi:10.1002/crat.200410489.

Prototype Generator

aflow --proto=A7BC12_cI40_204_bc_a_g --params=$a,y_{4},z_{4}$

Species:

Running:

Output: