AFLOW Prototype: A6BC2_hP9_164_i_a_d-001
This structure originally had the label A6BC2_hP9_164_i_a_d. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/2HX1
or
https://aflow.org/p/A6BC2_hP9_164_i_a_d-001
or
PDF Version
Prototype | F$_{6}$GeK$_{2}$ |
AFLOW prototype label | A6BC2_hP9_164_i_a_d-001 |
Strukturbericht designation | $J1_{13}$ |
ICSD | 24026 |
Pearson symbol | hP9 |
Space group number | 164 |
Space group symbol | $P\overline{3}m1$ |
AFLOW prototype command |
aflow --proto=A6BC2_hP9_164_i_a_d-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}$ |
(NH$_{4}$)$_2$GeF$_{6}$, Cs$_{2}$CeCl$_{6}$, K$_{2}$PtF$_{6}$, K$_{2}$SiF$_{6}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ge I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2d) | K I |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (2d) | K I |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (6i) | F I |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (6i) | F I |
$\mathbf{B_{6}}$ | = | $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (6i) | F I |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (6i) | F I |
$\mathbf{B_{8}}$ | = | $2 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (6i) | F I |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (6i) | F I |