Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6BC10_hR17_166_3c_a_5c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/LD13
or https://aflow.org/p/A6BC10_hR17_166_3c_a_5c-001
or PDF Version

MnBi$_{6}$Te$_{10}$ Structure: A6BC10_hR17_166_3c_a_5c-001

Picture of Structure; Click for Big Picture
Prototype Bi$_{6}$MnTe$_{10}$
AFLOW prototype label A6BC10_hR17_166_3c_a_5c-001
ICSD 37568
Pearson symbol hR17
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A6BC10_hR17_166_3c_a_5c-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}$

  • The ICSD entry lists $x_{9}$ = 0.4446, while the text of (Aliev, 2019) gives 0.41446. The difference is large enough that xprototype declares the two lattices unmatchable. The value of 0.41446 gives atomic positions consistent with Fig. 5 of (Alieve, 2019) - all Bi-Mn-Te layers are terminated by Te surfaces - so we use that value.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Mn I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Bi I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Bi I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Bi II
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Bi II
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (2c) Bi III
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- c x_{4} \,\mathbf{\hat{z}}$ (2c) Bi III
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $c x_{5} \,\mathbf{\hat{z}}$ (2c) Te I
$\mathbf{B_{9}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- c x_{5} \,\mathbf{\hat{z}}$ (2c) Te I
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $c x_{6} \,\mathbf{\hat{z}}$ (2c) Te II
$\mathbf{B_{11}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- c x_{6} \,\mathbf{\hat{z}}$ (2c) Te II
$\mathbf{B_{12}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $c x_{7} \,\mathbf{\hat{z}}$ (2c) Te III
$\mathbf{B_{13}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- c x_{7} \,\mathbf{\hat{z}}$ (2c) Te III
$\mathbf{B_{14}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $c x_{8} \,\mathbf{\hat{z}}$ (2c) Te IV
$\mathbf{B_{15}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- c x_{8} \,\mathbf{\hat{z}}$ (2c) Te IV
$\mathbf{B_{16}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $c x_{9} \,\mathbf{\hat{z}}$ (2c) Te V
$\mathbf{B_{17}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- c x_{9} \,\mathbf{\hat{z}}$ (2c) Te V

References

  • Z. S. Alieva, I. R. Amiraslanov, D. I. Nasonova, A. V.Shevelkov, N. A. Abdullayev, Z. A. Jahangirli, E. N. Orujlu, M. M. Otrokov, N. T. Mamedov, M. B. Babanly, and E. V.Chulkov, Novel ternary layered manganese bismuth tellurides of the MnTe-Bi$_{2}$Te$_{3}$ system: Synthesis and crystal structure, J. Alloys Compd. 789, 443–450 (2019), doi:10.1016/j.jallcom.2019.03.030.

Found in

  • J.-Q. Yan, Y. H. Liu, D. S. Parker, Y. Wu, A. A. Aczel, M. Matsuda, M. A. McGuire, and B. C. Sales, A-type antiferromagnetic order in MnBi$_{4}$Te$_{7}$ and MnBi$_{6}$Te$_{10}$ single crystals, Phys. Rev. Materials 4, 054202 (2020), doi:10.1103/PhysRevMaterials.4.054202.

Prototype Generator

aflow --proto=A6BC10_hR17_166_3c_a_5c --params=$a,c/a,x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9}$

Species:

Running:

Output: