AFLOW Prototype: A6BC10_hR17_166_3c_a_5c-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/LD13
or
https://aflow.org/p/A6BC10_hR17_166_3c_a_5c-001
or
PDF Version
Prototype | Bi$_{6}$MnTe$_{10}$ |
AFLOW prototype label | A6BC10_hR17_166_3c_a_5c-001 |
ICSD | 37568 |
Pearson symbol | hR17 |
Space group number | 166 |
Space group symbol | $R\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A6BC10_hR17_166_3c_a_5c-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}$ |
--hex
. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Mn I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $c x_{2} \,\mathbf{\hat{z}}$ | (2c) | Bi I |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $- c x_{2} \,\mathbf{\hat{z}}$ | (2c) | Bi I |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Bi II |
$\mathbf{B_{5}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Bi II |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $c x_{4} \,\mathbf{\hat{z}}$ | (2c) | Bi III |
$\mathbf{B_{7}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- c x_{4} \,\mathbf{\hat{z}}$ | (2c) | Bi III |
$\mathbf{B_{8}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $c x_{5} \,\mathbf{\hat{z}}$ | (2c) | Te I |
$\mathbf{B_{9}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- c x_{5} \,\mathbf{\hat{z}}$ | (2c) | Te I |
$\mathbf{B_{10}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $c x_{6} \,\mathbf{\hat{z}}$ | (2c) | Te II |
$\mathbf{B_{11}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- c x_{6} \,\mathbf{\hat{z}}$ | (2c) | Te II |
$\mathbf{B_{12}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $c x_{7} \,\mathbf{\hat{z}}$ | (2c) | Te III |
$\mathbf{B_{13}}$ | = | $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $- c x_{7} \,\mathbf{\hat{z}}$ | (2c) | Te III |
$\mathbf{B_{14}}$ | = | $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ | = | $c x_{8} \,\mathbf{\hat{z}}$ | (2c) | Te IV |
$\mathbf{B_{15}}$ | = | $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ | = | $- c x_{8} \,\mathbf{\hat{z}}$ | (2c) | Te IV |
$\mathbf{B_{16}}$ | = | $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ | = | $c x_{9} \,\mathbf{\hat{z}}$ | (2c) | Te V |
$\mathbf{B_{17}}$ | = | $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ | = | $- c x_{9} \,\mathbf{\hat{z}}$ | (2c) | Te V |