AFLOW Prototype: A6B6C_hP13_191_i_cde_a-002
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/4E59
or
https://aflow.org/p/A6B6C_hP13_191_i_cde_a-002
or
PDF Version
Prototype | Fe$_{6}$Ge$_{6}$Hf |
AFLOW prototype label | A6B6C_hP13_191_i_cde_a-002 |
ICSD | 632038 |
Pearson symbol | hP13 |
Space group number | 191 |
Space group symbol | $P6/mmm$ |
AFLOW prototype command |
aflow --proto=A6B6C_hP13_191_i_cde_a-002
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}$ |
DyCr$_{6}$Ge$_{6}$, DyFe$_{6}$Ge$_{6}$, DyMn$_{6}$Ge$_{6}$, ErCr$_{6}$Ge$_{6}$, GdFe$_{6}$Ge$_{6}$, GdMn$_{6}$Ge$_{6}$, HfFe$_{6}$Ge$_{6}$, HoCr$_{6}$Ge$_{6}$, HoFe$_{6}$Ge$_{6}$, HoMn$_{6}$Ge$_{6}$, LuFe$_{6}$Ge$_{6}$, LuMn$_{6}$Ge$_{6}$, MgCo$_{6}$Ge$_{6}$, MgFe$_{6}$Ge$_{6}$, NbFe$_{6}$Ge$_{6}$, NdMn$_{6}$Ge$_{6}$, ScFe$_{6}$Ge$_{6}$, ScMn$_{6}$Ge$_{6}$, ScMn$_{6}$Sn$_{6}$, TbCr$_{6}$Ge$_{6}$, TbFe$_{6}$Ge$_{6}$, TbMn$_{6}$Ge$_{6}$, TbMn$_{6}$Sn$_{6}$, TiFe$_{6}$Ge$_{6}$, TmFe$_{6}$Ge$_{6}$, TmMn$_{6}$Ge$_{6}$, YCr$_{6}$Ge$_{6}$, YFe$_{6}$Ge$_{6}$, YMn$_{6}$Sn$_{6}$, YbFe$_{6}$Ge$_{6}$, YbMn$_{6}$Ge$_{6}$, ZrFe$_{6}$Ge$_{6}$, DyFe$_{6}$Sn$_{4}$Ge$_{2}$, ErFe$_{6}$Sn$_{4}$Ge$_{2}$, GdFe$_{6}$Sn$_{4}$Ge$_{2}$, HoFe$_{6}$Sn$_{4}$Ge$_{2}$, TbFe$_{6}$Sn$_{4}$Ge$_{2}$, YFe$_{6}$Sn$_{4}$Ge$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Hf I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (2c) | Ge I |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (2c) | Ge I |
$\mathbf{B_{4}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2d) | Ge II |
$\mathbf{B_{5}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2d) | Ge II |
$\mathbf{B_{6}}$ | = | $z_{4} \, \mathbf{a}_{3}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (2e) | Ge III |
$\mathbf{B_{7}}$ | = | $- z_{4} \, \mathbf{a}_{3}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (2e) | Ge III |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (6i) | Fe I |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (6i) | Fe I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ | (6i) | Fe I |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (6i) | Fe I |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (6i) | Fe I |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ | (6i) | Fe I |