AFLOW Prototype: A5B6_hP33_151_3a2b_3c-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/V1KT
or
https://aflow.org/p/A5B6_hP33_151_3a2b_3c-001
or
PDF Version
Prototype | C$_{5}$V$_{6}$ |
AFLOW prototype label | A5B6_hP33_151_3a2b_3c-001 |
ICSD | 654841 |
Pearson symbol | hP33 |
Space group number | 151 |
Space group symbol | $P3_112$ |
AFLOW prototype command |
aflow --proto=A5B6_hP33_151_3a2b_3c-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (3a) | C I |
$\mathbf{B_{2}}$ | = | $x_{1} \, \mathbf{a}_{1}+2 x_{1} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (3a) | C I |
$\mathbf{B_{3}}$ | = | $- 2 x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ | = | $- \frac{3}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}$ | (3a) | C I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (3a) | C II |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (3a) | C II |
$\mathbf{B_{6}}$ | = | $- 2 x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ | (3a) | C II |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (3a) | C III |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (3a) | C III |
$\mathbf{B_{9}}$ | = | $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (3a) | C III |
$\mathbf{B_{10}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ | (3b) | C IV |
$\mathbf{B_{11}}$ | = | $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3b) | C IV |
$\mathbf{B_{12}}$ | = | $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3b) | C IV |
$\mathbf{B_{13}}$ | = | $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{5} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ | (3b) | C V |
$\mathbf{B_{14}}$ | = | $x_{5} \, \mathbf{a}_{1}+2 x_{5} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3b) | C V |
$\mathbf{B_{15}}$ | = | $- 2 x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3b) | C V |
$\mathbf{B_{16}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (6c) | V I |
$\mathbf{B_{17}}$ | = | $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6c) | V I |
$\mathbf{B_{18}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{6} + 2\right) \,\mathbf{\hat{z}}$ | (6c) | V I |
$\mathbf{B_{19}}$ | = | $- y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{6} - 2\right) \,\mathbf{\hat{z}}$ | (6c) | V I |
$\mathbf{B_{20}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{6} + 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6c) | V I |
$\mathbf{B_{21}}$ | = | $x_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (6c) | V I |
$\mathbf{B_{22}}$ | = | $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (6c) | V II |
$\mathbf{B_{23}}$ | = | $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6c) | V II |
$\mathbf{B_{24}}$ | = | $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{7} + 2\right) \,\mathbf{\hat{z}}$ | (6c) | V II |
$\mathbf{B_{25}}$ | = | $- y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{7} - 2\right) \,\mathbf{\hat{z}}$ | (6c) | V II |
$\mathbf{B_{26}}$ | = | $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{7} + 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6c) | V II |
$\mathbf{B_{27}}$ | = | $x_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (6c) | V II |
$\mathbf{B_{28}}$ | = | $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (6c) | V III |
$\mathbf{B_{29}}$ | = | $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6c) | V III |
$\mathbf{B_{30}}$ | = | $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{8} + 2\right) \,\mathbf{\hat{z}}$ | (6c) | V III |
$\mathbf{B_{31}}$ | = | $- y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{8} - 2\right) \,\mathbf{\hat{z}}$ | (6c) | V III |
$\mathbf{B_{32}}$ | = | $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{8} + 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6c) | V III |
$\mathbf{B_{33}}$ | = | $x_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (6c) | V III |