Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B3_oC32_63_cfg_ce-001

This structure originally had the label A5B3_oC32_63_cfg_ce. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/9AGN
or https://aflow.org/p/A5B3_oC32_63_cfg_ce-001
or PDF Version

Pd$_{5}$Pu$_{3}$ Structure: A5B3_oC32_63_cfg_ce-001

Picture of Structure; Click for Big Picture
Prototype Pd$_{5}$Pu$_{3}$
AFLOW prototype label A5B3_oC32_63_cfg_ce-001
ICSD 350
Pearson symbol oC32
Space group number 63
Space group symbol $Cmcm$
AFLOW prototype command aflow --proto=A5B3_oC32_63_cfg_ce-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}$

Other compounds with this structure

Ga$_{5}$U$_{3}$,  Ga$_{5}$Zr$_{3}$,  In$_{5}$Ce$_{3}$,  In$_{5}$Dy$_{3}$,  In$_{5}$Er$_{3}$,  In$_{5}$Gd$_{3}$,  In$_{5}$Ho$_{3}$,  In$_{5}$La$_{3}$,  In$_{5}$Lu$_{3}$,  In$_{5}$Nd$_{3}$,  In$_{5}$Pr$_{3}$,  In$_{5}$Sm$_{3}$,  In$_{5}$Tb$_{3}$,  In$_{5}$Th$_{3}$,  In$_{5}$Y$_{3}$,  Pb$_{5}$Ba$_{3}$,  Pd$_{5}$Dy$_{3}$,  Pd$_{5}$Er$_{3}$,  Pd$_{5}$Gd$_{3}$,  Pd$_{5}$Ho$_{3}$,  Pd$_{5}$Lu$_{3}$,  Pd$_{5}$Sc$_{3}$,  Pd$_{5}$Tb$_{3}$,  Pd$_{5}$Tm$_{3}$,  Pd$_{5}$Y$_{3}$,  Pd$_{5}$Yb$_{3}$,  Rh$_{5}$Zr$_{3}$,  Sn$_{5}$La$_{3}$,  Sn$_{5}$Sr$_{3}$,  Sn$_{5}$Yb$_{3}$,  (Mg$_{x}$Sn$_{1-x}$)$_{5}$La$_{3}$


  • Although (Massalski, 1990) lists Pd$_{5}$Pu$_{3}$ as the prototype for many structures, it is not shown in the assessed Pd-Pu phase diagram, which is based on data from 1967.
  • (Cromer, 1976) states that this phase may be isostructural with Ga$_{5}$Zr$_{3}$, but at the time of publication the exact structure of that phase had not been solved.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Pd I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Pd I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Pu I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Pu I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}$ (8e) Pu II
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Pu II
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (8e) Pu II
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Pu II
$\mathbf{B_{9}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8f) Pd II
$\mathbf{B_{10}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Pd II
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Pd II
$\mathbf{B_{12}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8f) Pd II
$\mathbf{B_{13}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Pd III
$\mathbf{B_{14}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Pd III
$\mathbf{B_{15}}$ = $- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Pd III
$\mathbf{B_{16}}$ = $\left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Pd III

References

  • D. T. Cromer, Plutonium-palladium Pu$_{3}$Pd$_{5}$, Acta Crystallogr. Sect. B 32, 1930–1932 (1976), doi:10.1107/S0567740876006778.
  • T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams, vol. 1 (ASM International, Materials Park, Ohio, USA, 1990), 2$^n$$^d$ edn.

Found in

  • A. Provino, N. S. Sangeetha, S. K. Dhar, V. Smetana, K. A. Gschneidner, V. K. Pecharsky, P. Manfrinetti, and A.-V. Mudring, New R$_{3}$Pd$_{5}$ Compounds (R = Sc, Y, Gd-Lu): Formation and Stability, Crystal Structure, and Antiferromagnetism, Crystal Growth & Design 16, 6001–6015 (2016), doi:10.1021/acs.cgd.6b01045.

Prototype Generator

aflow --proto=A5B3_oC32_63_cfg_ce --params=$a,b/a,c/a,y_{1},y_{2},x_{3},y_{4},z_{4},x_{5},y_{5}$

Species:

Running:

Output: