AFLOW Prototype: A5B3C12_hP20_189_dg_f_2gj-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/8TFL
or
https://aflow.org/p/A5B3C12_hP20_189_dg_f_2gj-001
or
PDF Version
Prototype | Ca$_{5}$Ir$_{3}$O$_{12}$ |
AFLOW prototype label | A5B3C12_hP20_189_dg_f_2gj-001 |
ICSD | 120112 |
Pearson symbol | hP20 |
Space group number | 189 |
Space group symbol | $P\overline{6}2m$ |
AFLOW prototype command |
aflow --proto=A5B3C12_hP20_189_dg_f_2gj-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2d) | Ca I |
$\mathbf{B_{2}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2d) | Ca I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ | (3f) | Ir I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ | (3f) | Ir I |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (3f) | Ir I |
$\mathbf{B_{6}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Ca II |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Ca II |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Ca II |
$\mathbf{B_{9}}$ | = | $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | O I |
$\mathbf{B_{10}}$ | = | $x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | O I |
$\mathbf{B_{11}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | O I |
$\mathbf{B_{12}}$ | = | $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | O II |
$\mathbf{B_{13}}$ | = | $x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | O II |
$\mathbf{B_{14}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | O II |
$\mathbf{B_{15}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}$ | (6j) | O III |
$\mathbf{B_{16}}$ | = | $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}$ | (6j) | O III |
$\mathbf{B_{17}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ | = | $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}$ | (6j) | O III |
$\mathbf{B_{18}}$ | = | $y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}$ | (6j) | O III |
$\mathbf{B_{19}}$ | = | $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}$ | (6j) | O III |
$\mathbf{B_{20}}$ | = | $- x_{6} \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}$ | = | $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}$ | (6j) | O III |