Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B3C12_hP20_189_dg_f_2gj-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/8TFL
or https://aflow.org/p/A5B3C12_hP20_189_dg_f_2gj-001
or PDF Version

Ca$_{5}$Ir$_{3}$O$_{12}$ Structure: A5B3C12_hP20_189_dg_f_2gj-001

Picture of Structure; Click for Big Picture
Prototype Ca$_{5}$Ir$_{3}$O$_{12}$
AFLOW prototype label A5B3C12_hP20_189_dg_f_2gj-001
ICSD 120112
Pearson symbol hP20
Space group number 189
Space group symbol $P\overline{6}2m$
AFLOW prototype command aflow --proto=A5B3C12_hP20_189_dg_f_2gj-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{6}$

  • The data for this structure was taken at 90K.
  • There is no ICSD entry for (Wakeshima, 2003). We use the entry from (Cao, 2007), which the authors say is in agreement with the Wakeshima result.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Ca I
$\mathbf{B_{2}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Ca I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (3f) Ir I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (3f) Ir I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (3f) Ir I
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) Ca II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) Ca II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) Ca II
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) O I
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) O I
$\mathbf{B_{11}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) O I
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) O II
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) O II
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) O II
$\mathbf{B_{15}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}$ (6j) O III
$\mathbf{B_{16}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}$ (6j) O III
$\mathbf{B_{17}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}$ (6j) O III
$\mathbf{B_{18}}$ = $y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}$ (6j) O III
$\mathbf{B_{19}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}$ (6j) O III
$\mathbf{B_{20}}$ = $- x_{6} \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}$ = $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}$ (6j) O III

References

  • M. Wakeshima, N. Taira, Y. Hinatsu, and Y. Ishiib, Electrical and magnetic properties of pseudo-one-dimensional calcium iridium oxide Ca$_{5}$Ir$_{3}$O$_{12}$, Solid State Commun. 125, 311–315 (2003), doi:10.1016/S0038-1098(02)00823-2.
  • G. Cao, V. Durairaj, S. Chikara, S. Parkin, and P. Schlottmann, Partial antiferromagnetism in spin-chain Sr$_{5}$Rh$_{4}$O$_{12}$, Ca$_{5}$Ir$_{3}$O$_{12}$, and Ca4IrO6 single crystals, Phys. Rev. B 75, 075153 (2007), doi:10.1103/PhysRevB.75.134402.

Found in

  • M. Charlebois, J.-B. Morée, K. Nakamura, Y. Nomura, T. Tadano, Y. Yoshimoto, Y. Yamaji, T. Hasegawa, K. Matsuhira, and M. Imada, {\em Ab initio} Derivation of Low-Energy Hamiltonians for Systems with Strong Spin-Orbit Interaction and Its Application to Ca$_{5}$Ir$_{3}$O$_{12}$, Phys. Rev. B 104, 075153 (2021), doi:10.1103/PhysRevB.104.075153.

Prototype Generator

aflow --proto=A5B3C12_hP20_189_dg_f_2gj --params=$a,c/a,x_{2},x_{3},x_{4},x_{5},x_{6},y_{6}$

Species:

Running:

Output: