AFLOW Prototype: A4B3_oI14_71_ef_af-001
This structure originally had the label A4B3_oI14_71_gh_cg. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/3XYE
or
https://aflow.org/p/A4B3_oI14_71_ef_af-001
or
PDF Version
Prototype | B$_{4}$Ta$_{3}$ |
AFLOW prototype label | A4B3_oI14_71_ef_af-001 |
Strukturbericht designation | $D7_{b}$ |
ICSD | 44589 |
Pearson symbol | oI14 |
Space group number | 71 |
Space group symbol | $Immm$ |
AFLOW prototype command |
aflow --proto=A4B3_oI14_71_ef_af-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}$ |
B$_{4}$Cr$_{3}$, B$_{4}$Mn$_{3}$, B$_{4}$Mo$_{2}$Ni, B$_{4}$Nb$_{3}$, B$_{4}$Ta$_{3}$, B$_{4}$V$_{3}$, B$_{4}$CoMo$_{2}$, B$_{4}$FeMo$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ta I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}$ | (4e) | B I |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (4e) | B I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | B II |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | B II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | Ta II |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | Ta II |