Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B3_hR7_166_2c_ac-002

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/MVZB
or https://aflow.org/p/A4B3_hR7_166_2c_ac-002
or PDF Version

Bi$_{4}$Te$_{3}$ Structure: A4B3_hR7_166_2c_ac-002

Picture of Structure; Click for Big Picture
Prototype Bi$_{4}$Te$_{3}$
AFLOW prototype label A4B3_hR7_166_2c_ac-002
ICSD 30526
Pearson symbol hR7
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A4B3_hR7_166_2c_ac-002
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}$

Other compounds with this structure

Bi$_{4}$Se$_{3}$


  • (Villars, 2016) lists Bi$_{4}$Se$_{3}$ as the prototype for this structure, but the data for Bi$_{4}$Te$_{3}$ is much more accessible, so we use that instead.
  • Al$_{4}$C$_{3}$ ($D7_{1}$) and Bi$_{4}$Te$_{3}$ have the same AFLOW prototype label, A4B3_hR7_166_2c_ac. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.
  • Hexagonal settings for rhombohedral structures can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Te I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Bi I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Bi I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Bi II
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Bi II
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (2c) Te II
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- c x_{4} \,\mathbf{\hat{z}}$ (2c) Te II

References

  • K. Yamana, K. Kihara, and T. Matsumoto, Bismuth Tellurides: BiTe and Bi$_{4}$Te$_{3}$, Acta Crystallogr. Sect. B 35, 147–149 (1979), doi:10.1107/S0567740879002788.
  • P. Villars, Bi$_{4}$Se$_{3}$ Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) SpringerMaterials.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A4B3_hR7_166_2c_ac --params=$a,c/a,x_{2},x_{3},x_{4}$

Species:

Running:

Output: