Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B2C2D_tI18_139_h_d_e_a-001

This structure originally had the label A4B2C2D_tI18_139_h_d_e_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/1KN8
or https://aflow.org/p/A4B2C2D_tI18_139_h_d_e_a-001
or PDF Version

K$_{2}$OsO$_{2}$Cl$_{4}$ ($J1_{5}$) Structure: A4B2C2D_tI18_139_h_d_e_a-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{4}$K$_{2}$O$_{2}$Os
AFLOW prototype label A4B2C2D_tI18_139_h_d_e_a-001
Strukturbericht designation $J1_{5}$
ICSD 36231
Pearson symbol tI18
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=A4B2C2D_tI18_139_h_d_e_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak x_{4}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Os I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) K I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) K I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{5}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+2 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8h) Cl I
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- 2 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8h) Cl I
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8h) Cl I
$\mathbf{B_{9}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8h) Cl I

References

  • J. L. Hoard and J. D. Grenko, The Crystal Structure of Potassium Osmyl Chloride, K$_{2}$OsO$_{2}$Cl$_{4}$, Z. Kristallogr. 87, 100–109 (1934), doi:10.1524/zkri.1934.87.1.100.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A4B2C2D_tI18_139_h_d_e_a --params=$a,c/a,z_{3},x_{4}$

Species:

Running:

Output: