Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A43B5C17_oC260_63_c8fg6h_cfg_ce3f2h-001

This structure originally had the label A43B5C17_oC260_63_c8fg6h_cfg_ce3f2h. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/Z34R
or https://aflow.org/p/A43B5C17_oC260_63_c8fg6h_cfg_ce3f2h-001
or PDF Version

La$_{43}$Ni$_{17}$Mg$_{5}$ Structure: A43B5C17_oC260_63_c8fg6h_cfg_ce3f2h-001

Picture of Structure; Click for Big Picture
Prototype La$_{43}$Mg$_{5}$Ni$_{17}$
AFLOW prototype label A43B5C17_oC260_63_c8fg6h_cfg_ce3f2h-001
ICSD 249963
Pearson symbol oC260
Space group number 63
Space group symbol $Cmcm$
AFLOW prototype command aflow --proto=A43B5C17_oC260_63_c8fg6h_cfg_ce3f2h-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak y_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak y_{25}, \allowbreak z_{25}, \allowbreak x_{26}, \allowbreak y_{26}, \allowbreak z_{26}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) La I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) La I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Mg I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Mg I
$\mathbf{B_{5}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Ni I
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Ni I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}$ (8e) Ni II
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Ni II
$\mathbf{B_{9}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (8e) Ni II
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Ni II
$\mathbf{B_{11}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8f) La II
$\mathbf{B_{12}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La II
$\mathbf{B_{13}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La II
$\mathbf{B_{14}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8f) La II
$\mathbf{B_{15}}$ = $- y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8f) La III
$\mathbf{B_{16}}$ = $y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La III
$\mathbf{B_{17}}$ = $- y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La III
$\mathbf{B_{18}}$ = $y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8f) La III
$\mathbf{B_{19}}$ = $- y_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8f) La IV
$\mathbf{B_{20}}$ = $y_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La IV
$\mathbf{B_{21}}$ = $- y_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La IV
$\mathbf{B_{22}}$ = $y_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8f) La IV
$\mathbf{B_{23}}$ = $- y_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8f) La V
$\mathbf{B_{24}}$ = $y_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La V
$\mathbf{B_{25}}$ = $- y_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La V
$\mathbf{B_{26}}$ = $y_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8f) La V
$\mathbf{B_{27}}$ = $- y_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8f) La VI
$\mathbf{B_{28}}$ = $y_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La VI
$\mathbf{B_{29}}$ = $- y_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La VI
$\mathbf{B_{30}}$ = $y_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8f) La VI
$\mathbf{B_{31}}$ = $- y_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8f) La VII
$\mathbf{B_{32}}$ = $y_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La VII
$\mathbf{B_{33}}$ = $- y_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La VII
$\mathbf{B_{34}}$ = $y_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8f) La VII
$\mathbf{B_{35}}$ = $- y_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8f) La VIII
$\mathbf{B_{36}}$ = $y_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La VIII
$\mathbf{B_{37}}$ = $- y_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La VIII
$\mathbf{B_{38}}$ = $y_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- b y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8f) La VIII
$\mathbf{B_{39}}$ = $- y_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8f) La IX
$\mathbf{B_{40}}$ = $y_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La IX
$\mathbf{B_{41}}$ = $- y_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La IX
$\mathbf{B_{42}}$ = $y_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- b y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8f) La IX
$\mathbf{B_{43}}$ = $- y_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8f) Mg II
$\mathbf{B_{44}}$ = $y_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Mg II
$\mathbf{B_{45}}$ = $- y_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Mg II
$\mathbf{B_{46}}$ = $y_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- b y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8f) Mg II
$\mathbf{B_{47}}$ = $- y_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8f) Ni III
$\mathbf{B_{48}}$ = $y_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ni III
$\mathbf{B_{49}}$ = $- y_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ni III
$\mathbf{B_{50}}$ = $y_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- b y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8f) Ni III
$\mathbf{B_{51}}$ = $- y_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8f) Ni IV
$\mathbf{B_{52}}$ = $y_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ni IV
$\mathbf{B_{53}}$ = $- y_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ni IV
$\mathbf{B_{54}}$ = $y_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- b y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8f) Ni IV
$\mathbf{B_{55}}$ = $- y_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $b y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8f) Ni V
$\mathbf{B_{56}}$ = $y_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ni V
$\mathbf{B_{57}}$ = $- y_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ni V
$\mathbf{B_{58}}$ = $y_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- b y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8f) Ni V
$\mathbf{B_{59}}$ = $\left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} + y_{17}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) La X
$\mathbf{B_{60}}$ = $- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}- \left(x_{17} + y_{17}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) La X
$\mathbf{B_{61}}$ = $- \left(x_{17} + y_{17}\right) \, \mathbf{a}_{1}- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) La X
$\mathbf{B_{62}}$ = $\left(x_{17} + y_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) La X
$\mathbf{B_{63}}$ = $\left(x_{18} - y_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} + y_{18}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Mg III
$\mathbf{B_{64}}$ = $- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{1}- \left(x_{18} + y_{18}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Mg III
$\mathbf{B_{65}}$ = $- \left(x_{18} + y_{18}\right) \, \mathbf{a}_{1}- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Mg III
$\mathbf{B_{66}}$ = $\left(x_{18} + y_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} - y_{18}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Mg III
$\mathbf{B_{67}}$ = $\left(x_{19} - y_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} + y_{19}\right) \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (16h) La XI
$\mathbf{B_{68}}$ = $- \left(x_{19} - y_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} + y_{19}\right) \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XI
$\mathbf{B_{69}}$ = $- \left(x_{19} + y_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} - y_{19}\right) \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XI
$\mathbf{B_{70}}$ = $\left(x_{19} + y_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} - y_{19}\right) \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (16h) La XI
$\mathbf{B_{71}}$ = $- \left(x_{19} - y_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} + y_{19}\right) \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (16h) La XI
$\mathbf{B_{72}}$ = $\left(x_{19} - y_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} + y_{19}\right) \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XI
$\mathbf{B_{73}}$ = $\left(x_{19} + y_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} - y_{19}\right) \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XI
$\mathbf{B_{74}}$ = $- \left(x_{19} + y_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} - y_{19}\right) \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (16h) La XI
$\mathbf{B_{75}}$ = $\left(x_{20} - y_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} + y_{20}\right) \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (16h) La XII
$\mathbf{B_{76}}$ = $- \left(x_{20} - y_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} + y_{20}\right) \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}- b y_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XII
$\mathbf{B_{77}}$ = $- \left(x_{20} + y_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} - y_{20}\right) \, \mathbf{a}_{2}- \left(z_{20} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}- c \left(z_{20} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XII
$\mathbf{B_{78}}$ = $\left(x_{20} + y_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} - y_{20}\right) \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}- b y_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (16h) La XII
$\mathbf{B_{79}}$ = $- \left(x_{20} - y_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} + y_{20}\right) \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}- b y_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (16h) La XII
$\mathbf{B_{80}}$ = $\left(x_{20} - y_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} + y_{20}\right) \, \mathbf{a}_{2}- \left(z_{20} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}- c \left(z_{20} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XII
$\mathbf{B_{81}}$ = $\left(x_{20} + y_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} - y_{20}\right) \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}- b y_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XII
$\mathbf{B_{82}}$ = $- \left(x_{20} + y_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} - y_{20}\right) \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (16h) La XII
$\mathbf{B_{83}}$ = $\left(x_{21} - y_{21}\right) \, \mathbf{a}_{1}+\left(x_{21} + y_{21}\right) \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $a x_{21} \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (16h) La XIII
$\mathbf{B_{84}}$ = $- \left(x_{21} - y_{21}\right) \, \mathbf{a}_{1}- \left(x_{21} + y_{21}\right) \, \mathbf{a}_{2}+\left(z_{21} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{21} \,\mathbf{\hat{x}}- b y_{21} \,\mathbf{\hat{y}}+c \left(z_{21} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XIII
$\mathbf{B_{85}}$ = $- \left(x_{21} + y_{21}\right) \, \mathbf{a}_{1}- \left(x_{21} - y_{21}\right) \, \mathbf{a}_{2}- \left(z_{21} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{21} \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}- c \left(z_{21} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XIII
$\mathbf{B_{86}}$ = $\left(x_{21} + y_{21}\right) \, \mathbf{a}_{1}+\left(x_{21} - y_{21}\right) \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $a x_{21} \,\mathbf{\hat{x}}- b y_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (16h) La XIII
$\mathbf{B_{87}}$ = $- \left(x_{21} - y_{21}\right) \, \mathbf{a}_{1}- \left(x_{21} + y_{21}\right) \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $- a x_{21} \,\mathbf{\hat{x}}- b y_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (16h) La XIII
$\mathbf{B_{88}}$ = $\left(x_{21} - y_{21}\right) \, \mathbf{a}_{1}+\left(x_{21} + y_{21}\right) \, \mathbf{a}_{2}- \left(z_{21} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{21} \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}- c \left(z_{21} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XIII
$\mathbf{B_{89}}$ = $\left(x_{21} + y_{21}\right) \, \mathbf{a}_{1}+\left(x_{21} - y_{21}\right) \, \mathbf{a}_{2}+\left(z_{21} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{21} \,\mathbf{\hat{x}}- b y_{21} \,\mathbf{\hat{y}}+c \left(z_{21} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XIII
$\mathbf{B_{90}}$ = $- \left(x_{21} + y_{21}\right) \, \mathbf{a}_{1}- \left(x_{21} - y_{21}\right) \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $- a x_{21} \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (16h) La XIII
$\mathbf{B_{91}}$ = $\left(x_{22} - y_{22}\right) \, \mathbf{a}_{1}+\left(x_{22} + y_{22}\right) \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $a x_{22} \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (16h) La XIV
$\mathbf{B_{92}}$ = $- \left(x_{22} - y_{22}\right) \, \mathbf{a}_{1}- \left(x_{22} + y_{22}\right) \, \mathbf{a}_{2}+\left(z_{22} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{22} \,\mathbf{\hat{x}}- b y_{22} \,\mathbf{\hat{y}}+c \left(z_{22} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XIV
$\mathbf{B_{93}}$ = $- \left(x_{22} + y_{22}\right) \, \mathbf{a}_{1}- \left(x_{22} - y_{22}\right) \, \mathbf{a}_{2}- \left(z_{22} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{22} \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}- c \left(z_{22} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XIV
$\mathbf{B_{94}}$ = $\left(x_{22} + y_{22}\right) \, \mathbf{a}_{1}+\left(x_{22} - y_{22}\right) \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $a x_{22} \,\mathbf{\hat{x}}- b y_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (16h) La XIV
$\mathbf{B_{95}}$ = $- \left(x_{22} - y_{22}\right) \, \mathbf{a}_{1}- \left(x_{22} + y_{22}\right) \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $- a x_{22} \,\mathbf{\hat{x}}- b y_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (16h) La XIV
$\mathbf{B_{96}}$ = $\left(x_{22} - y_{22}\right) \, \mathbf{a}_{1}+\left(x_{22} + y_{22}\right) \, \mathbf{a}_{2}- \left(z_{22} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{22} \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}- c \left(z_{22} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XIV
$\mathbf{B_{97}}$ = $\left(x_{22} + y_{22}\right) \, \mathbf{a}_{1}+\left(x_{22} - y_{22}\right) \, \mathbf{a}_{2}+\left(z_{22} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{22} \,\mathbf{\hat{x}}- b y_{22} \,\mathbf{\hat{y}}+c \left(z_{22} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XIV
$\mathbf{B_{98}}$ = $- \left(x_{22} + y_{22}\right) \, \mathbf{a}_{1}- \left(x_{22} - y_{22}\right) \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $- a x_{22} \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (16h) La XIV
$\mathbf{B_{99}}$ = $\left(x_{23} - y_{23}\right) \, \mathbf{a}_{1}+\left(x_{23} + y_{23}\right) \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $a x_{23} \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (16h) La XV
$\mathbf{B_{100}}$ = $- \left(x_{23} - y_{23}\right) \, \mathbf{a}_{1}- \left(x_{23} + y_{23}\right) \, \mathbf{a}_{2}+\left(z_{23} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{23} \,\mathbf{\hat{x}}- b y_{23} \,\mathbf{\hat{y}}+c \left(z_{23} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XV
$\mathbf{B_{101}}$ = $- \left(x_{23} + y_{23}\right) \, \mathbf{a}_{1}- \left(x_{23} - y_{23}\right) \, \mathbf{a}_{2}- \left(z_{23} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{23} \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}- c \left(z_{23} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XV
$\mathbf{B_{102}}$ = $\left(x_{23} + y_{23}\right) \, \mathbf{a}_{1}+\left(x_{23} - y_{23}\right) \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $a x_{23} \,\mathbf{\hat{x}}- b y_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (16h) La XV
$\mathbf{B_{103}}$ = $- \left(x_{23} - y_{23}\right) \, \mathbf{a}_{1}- \left(x_{23} + y_{23}\right) \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $- a x_{23} \,\mathbf{\hat{x}}- b y_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (16h) La XV
$\mathbf{B_{104}}$ = $\left(x_{23} - y_{23}\right) \, \mathbf{a}_{1}+\left(x_{23} + y_{23}\right) \, \mathbf{a}_{2}- \left(z_{23} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{23} \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}- c \left(z_{23} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XV
$\mathbf{B_{105}}$ = $\left(x_{23} + y_{23}\right) \, \mathbf{a}_{1}+\left(x_{23} - y_{23}\right) \, \mathbf{a}_{2}+\left(z_{23} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{23} \,\mathbf{\hat{x}}- b y_{23} \,\mathbf{\hat{y}}+c \left(z_{23} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XV
$\mathbf{B_{106}}$ = $- \left(x_{23} + y_{23}\right) \, \mathbf{a}_{1}- \left(x_{23} - y_{23}\right) \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $- a x_{23} \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (16h) La XV
$\mathbf{B_{107}}$ = $\left(x_{24} - y_{24}\right) \, \mathbf{a}_{1}+\left(x_{24} + y_{24}\right) \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $a x_{24} \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (16h) La XVI
$\mathbf{B_{108}}$ = $- \left(x_{24} - y_{24}\right) \, \mathbf{a}_{1}- \left(x_{24} + y_{24}\right) \, \mathbf{a}_{2}+\left(z_{24} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{24} \,\mathbf{\hat{x}}- b y_{24} \,\mathbf{\hat{y}}+c \left(z_{24} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XVI
$\mathbf{B_{109}}$ = $- \left(x_{24} + y_{24}\right) \, \mathbf{a}_{1}- \left(x_{24} - y_{24}\right) \, \mathbf{a}_{2}- \left(z_{24} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{24} \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}- c \left(z_{24} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XVI
$\mathbf{B_{110}}$ = $\left(x_{24} + y_{24}\right) \, \mathbf{a}_{1}+\left(x_{24} - y_{24}\right) \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $a x_{24} \,\mathbf{\hat{x}}- b y_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (16h) La XVI
$\mathbf{B_{111}}$ = $- \left(x_{24} - y_{24}\right) \, \mathbf{a}_{1}- \left(x_{24} + y_{24}\right) \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $- a x_{24} \,\mathbf{\hat{x}}- b y_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (16h) La XVI
$\mathbf{B_{112}}$ = $\left(x_{24} - y_{24}\right) \, \mathbf{a}_{1}+\left(x_{24} + y_{24}\right) \, \mathbf{a}_{2}- \left(z_{24} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{24} \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}- c \left(z_{24} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XVI
$\mathbf{B_{113}}$ = $\left(x_{24} + y_{24}\right) \, \mathbf{a}_{1}+\left(x_{24} - y_{24}\right) \, \mathbf{a}_{2}+\left(z_{24} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{24} \,\mathbf{\hat{x}}- b y_{24} \,\mathbf{\hat{y}}+c \left(z_{24} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) La XVI
$\mathbf{B_{114}}$ = $- \left(x_{24} + y_{24}\right) \, \mathbf{a}_{1}- \left(x_{24} - y_{24}\right) \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $- a x_{24} \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (16h) La XVI
$\mathbf{B_{115}}$ = $\left(x_{25} - y_{25}\right) \, \mathbf{a}_{1}+\left(x_{25} + y_{25}\right) \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $a x_{25} \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (16h) Ni VI
$\mathbf{B_{116}}$ = $- \left(x_{25} - y_{25}\right) \, \mathbf{a}_{1}- \left(x_{25} + y_{25}\right) \, \mathbf{a}_{2}+\left(z_{25} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{25} \,\mathbf{\hat{x}}- b y_{25} \,\mathbf{\hat{y}}+c \left(z_{25} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ni VI
$\mathbf{B_{117}}$ = $- \left(x_{25} + y_{25}\right) \, \mathbf{a}_{1}- \left(x_{25} - y_{25}\right) \, \mathbf{a}_{2}- \left(z_{25} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{25} \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}- c \left(z_{25} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ni VI
$\mathbf{B_{118}}$ = $\left(x_{25} + y_{25}\right) \, \mathbf{a}_{1}+\left(x_{25} - y_{25}\right) \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ = $a x_{25} \,\mathbf{\hat{x}}- b y_{25} \,\mathbf{\hat{y}}- c z_{25} \,\mathbf{\hat{z}}$ (16h) Ni VI
$\mathbf{B_{119}}$ = $- \left(x_{25} - y_{25}\right) \, \mathbf{a}_{1}- \left(x_{25} + y_{25}\right) \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ = $- a x_{25} \,\mathbf{\hat{x}}- b y_{25} \,\mathbf{\hat{y}}- c z_{25} \,\mathbf{\hat{z}}$ (16h) Ni VI
$\mathbf{B_{120}}$ = $\left(x_{25} - y_{25}\right) \, \mathbf{a}_{1}+\left(x_{25} + y_{25}\right) \, \mathbf{a}_{2}- \left(z_{25} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{25} \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}- c \left(z_{25} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ni VI
$\mathbf{B_{121}}$ = $\left(x_{25} + y_{25}\right) \, \mathbf{a}_{1}+\left(x_{25} - y_{25}\right) \, \mathbf{a}_{2}+\left(z_{25} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{25} \,\mathbf{\hat{x}}- b y_{25} \,\mathbf{\hat{y}}+c \left(z_{25} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ni VI
$\mathbf{B_{122}}$ = $- \left(x_{25} + y_{25}\right) \, \mathbf{a}_{1}- \left(x_{25} - y_{25}\right) \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $- a x_{25} \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (16h) Ni VI
$\mathbf{B_{123}}$ = $\left(x_{26} - y_{26}\right) \, \mathbf{a}_{1}+\left(x_{26} + y_{26}\right) \, \mathbf{a}_{2}+z_{26} \, \mathbf{a}_{3}$ = $a x_{26} \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}+c z_{26} \,\mathbf{\hat{z}}$ (16h) Ni VII
$\mathbf{B_{124}}$ = $- \left(x_{26} - y_{26}\right) \, \mathbf{a}_{1}- \left(x_{26} + y_{26}\right) \, \mathbf{a}_{2}+\left(z_{26} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{26} \,\mathbf{\hat{x}}- b y_{26} \,\mathbf{\hat{y}}+c \left(z_{26} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ni VII
$\mathbf{B_{125}}$ = $- \left(x_{26} + y_{26}\right) \, \mathbf{a}_{1}- \left(x_{26} - y_{26}\right) \, \mathbf{a}_{2}- \left(z_{26} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{26} \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}- c \left(z_{26} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ni VII
$\mathbf{B_{126}}$ = $\left(x_{26} + y_{26}\right) \, \mathbf{a}_{1}+\left(x_{26} - y_{26}\right) \, \mathbf{a}_{2}- z_{26} \, \mathbf{a}_{3}$ = $a x_{26} \,\mathbf{\hat{x}}- b y_{26} \,\mathbf{\hat{y}}- c z_{26} \,\mathbf{\hat{z}}$ (16h) Ni VII
$\mathbf{B_{127}}$ = $- \left(x_{26} - y_{26}\right) \, \mathbf{a}_{1}- \left(x_{26} + y_{26}\right) \, \mathbf{a}_{2}- z_{26} \, \mathbf{a}_{3}$ = $- a x_{26} \,\mathbf{\hat{x}}- b y_{26} \,\mathbf{\hat{y}}- c z_{26} \,\mathbf{\hat{z}}$ (16h) Ni VII
$\mathbf{B_{128}}$ = $\left(x_{26} - y_{26}\right) \, \mathbf{a}_{1}+\left(x_{26} + y_{26}\right) \, \mathbf{a}_{2}- \left(z_{26} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{26} \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}- c \left(z_{26} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ni VII
$\mathbf{B_{129}}$ = $\left(x_{26} + y_{26}\right) \, \mathbf{a}_{1}+\left(x_{26} - y_{26}\right) \, \mathbf{a}_{2}+\left(z_{26} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{26} \,\mathbf{\hat{x}}- b y_{26} \,\mathbf{\hat{y}}+c \left(z_{26} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ni VII
$\mathbf{B_{130}}$ = $- \left(x_{26} + y_{26}\right) \, \mathbf{a}_{1}- \left(x_{26} - y_{26}\right) \, \mathbf{a}_{2}+z_{26} \, \mathbf{a}_{3}$ = $- a x_{26} \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}+c z_{26} \,\mathbf{\hat{z}}$ (16h) Ni VII

References

  • P. Solokha, S. D. Negri, V. Pavlyuk, and A. Saccone, Anti-Mackay Polyicosahedral Clusters in La-Ni-Mg Ternary Compounds: Synthesis and Crystal Structure of the La$_{43}$Ni$_{17}$Mg$_{5}$ New Intermetallic Phase, Inorg. Chem. 48, 11586–11593 (2009), doi:10.1021/ic901422v.

Prototype Generator

aflow --proto=A43B5C17_oC260_63_c8fg6h_cfg_ce3f2h --params=$a,b/a,c/a,y_{1},y_{2},y_{3},x_{4},y_{5},z_{5},y_{6},z_{6},y_{7},z_{7},y_{8},z_{8},y_{9},z_{9},y_{10},z_{10},y_{11},z_{11},y_{12},z_{12},y_{13},z_{13},y_{14},z_{14},y_{15},z_{15},y_{16},z_{16},x_{17},y_{17},x_{18},y_{18},x_{19},y_{19},z_{19},x_{20},y_{20},z_{20},x_{21},y_{21},z_{21},x_{22},y_{22},z_{22},x_{23},y_{23},z_{23},x_{24},y_{24},z_{24},x_{25},y_{25},z_{25},x_{26},y_{26},z_{26}$

Species:

Running:

Output: