Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_hP8_194_af_c-001

This structure originally had the label A3B_hP8_194_af_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/72PY
or https://aflow.org/p/A3B_hP8_194_af_c-001
or PDF Version

ReB$_{3}$ Structure: A3B_hP8_194_af_c-001

Picture of Structure; Click for Big Picture
Prototype B$_{3}$Re
AFLOW prototype label A3B_hP8_194_af_c-001
ICSD 24361
Pearson symbol hP8
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=A3B_hP8_194_af_c-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}$

Other compounds with this structure

TcB${3}$,  CaNi$_{2}$Si,  GdPt$_{2}$Sn


  • The lattice constants $a$ and $c$ were inferred from the nearest-neighbor distances in (Aronsson, 1960).
  • (Frotscher, 2010) states that this structure was falsely assigned, and that the true structure is ReB$_{2}$, which is identical to this structure with the (2a) boron atoms removed.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) B I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) B I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2c) Re I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2c) Re I
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4f) B II
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) B II
$\mathbf{B_{7}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4f) B II
$\mathbf{B_{8}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) B II

References

  • B. Aronsson, E. Stenberg, and J. Åselius, Borides of Rhenium and the Platinum Metals, Acta Chem. Scand. 14, 733–741 (1960), doi:10.3891/acta.chem.scand.14-0733.
  • M. Frotscher, M. Hölzel, and B. Albert, Crystal Structures of the Metal Diborides ReB$_{2}$, RuB$_{2}$, and OsB$_{2}$ from Neutron Powder Diffraction, Z. Anorganische und Allgemeine Chemie 636, 1783–1786 (2010), doi:10.1002/zaac.201000101.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OK, 1991), vol. I, chap. , p. 612.

Prototype Generator

aflow --proto=A3B_hP8_194_af_c --params=$a,c/a,z_{3}$

Species:

Running:

Output: