Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3BC_hR5_146_b_a_a-001

This structure originally had the label A3BC_hR5_146_b_a_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/YGSU
or https://aflow.org/p/A3BC_hR5_146_b_a_a-001
or PDF Version

γ-Ag$_{3}$SI (Low-Temperature) Structure: A3BC_hR5_146_b_a_a-001

Picture of Structure; Click for Big Picture
Prototype Ag$_{3}$IS
AFLOW prototype label A3BC_hR5_146_b_a_a-001
ICSD 174095
Pearson symbol hR5
Space group number 146
Space group symbol $R3$
AFLOW prototype command aflow --proto=A3BC_hR5_146_b_a_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

CsGeCl$_{3}$


  • $\gamma$–Ag$_{3}$SI is the low temperature structure. Above 157K it transforms into $\beta$–Ag$_{3}$SI, a variation of the cubic perovskite ($E2_{1}$) structure.
  • Space group $R3$ #146 allows an arbitary placement of the origin of the $z$-axis. We use this freedom to place a sulfur atom at the origin, $z_{2} = 0$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (1a) I I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (1a) S I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (3b) Ag I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (3b) Ag I
$\mathbf{B_{5}}$ = $y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (3b) Ag I

References

  • S. Hoshino, T. Sakuma, and Y. Fujii, A Structural Phase Transition in Superionic Conductor Ag$_{3}$SI, J. Phys. Soc. Jpn. 47, 1252–1259 (1979), doi:10.1143/JPSJ.47.1252.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A3BC_hR5_146_b_a_a --params=$a,c/a,x_{1},x_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: