AFLOW Prototype: A3BC9_hP26_194_h_a_hk-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/LCWU
or
https://aflow.org/p/A3BC9_hP26_194_h_a_hk-001
or
PDF Version
Prototype | CCaO$_{3}$ |
AFLOW prototype label | A3BC9_hP26_194_h_a_hk-001 |
Mineral name | vaterite |
ICSD | 15879 |
Pearson symbol | hP26 |
Space group number | 194 |
Space group symbol | $P6_3/mmc$ |
AFLOW prototype command |
aflow --proto=A3BC9_hP26_194_h_a_hk-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak z_{4}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ca I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2a) | Ca I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6h) | C I |
$\mathbf{B_{4}}$ | = | $- 2 x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6h) | C I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6h) | C I |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6h) | C I |
$\mathbf{B_{7}}$ | = | $2 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6h) | C I |
$\mathbf{B_{8}}$ | = | $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6h) | C I |
$\mathbf{B_{9}}$ | = | $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6h) | O I |
$\mathbf{B_{10}}$ | = | $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6h) | O I |
$\mathbf{B_{11}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6h) | O I |
$\mathbf{B_{12}}$ | = | $- x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6h) | O I |
$\mathbf{B_{13}}$ | = | $2 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6h) | O I |
$\mathbf{B_{14}}$ | = | $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6h) | O I |
$\mathbf{B_{15}}$ | = | $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{16}}$ | = | $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{17}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{18}}$ | = | $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{19}}$ | = | $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{20}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{21}}$ | = | $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{22}}$ | = | $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{23}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{24}}$ | = | $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{25}}$ | = | $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |
$\mathbf{B_{26}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O II |