Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B9C29D8_hP98_165_f_bdg_df4g_dg-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/JRX6
or https://aflow.org/p/A3B9C29D8_hP98_165_f_bdg_df4g_dg-001
or PDF Version

Li$_{9}$Al$_{3}$(P$_{2}$O$_{7}$)$_{3}$(PO$_{4}$)$_{2}$ Structure: A3B9C29D8_hP98_165_f_bdg_df4g_dg-001

Picture of Structure; Click for Big Picture
Prototype Al$_{3}$Li$_{9}$O$_{29}$P$_{8}$
AFLOW prototype label A3B9C29D8_hP98_165_f_bdg_df4g_dg-001
ICSD 50957
Pearson symbol hP98
Space group number 165
Space group symbol $P\overline{3}c1$
AFLOW prototype command aflow --proto=A3B9C29D8_hP98_165_f_bdg_df4g_dg-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}$

Other compounds with this structure

Li$_{9}$Cr$_{3}$(P$_{2}$O$_{7}$)$_{3}$(PO$_{4}$)$_{2}$,  Li$_{9}$Ga$_{3}$(P$_{2}$O$_{7}$)$_{3}$(PO$_{4}$)$_{2}$,  Li$_{9}$Fe$_{3}$(P$_{2}$O$_{7}$)$_{3}$(PO$_{4}$)$_{2}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2b) Li I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Li I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4d) Li II
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Li II
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (4d) Li II
$\mathbf{B_{6}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Li II
$\mathbf{B_{7}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4d) O I
$\mathbf{B_{8}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O I
$\mathbf{B_{9}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4d) O I
$\mathbf{B_{10}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O I
$\mathbf{B_{11}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4d) P I
$\mathbf{B_{12}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) P I
$\mathbf{B_{13}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4d) P I
$\mathbf{B_{14}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) P I
$\mathbf{B_{15}}$ = $x_{5} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{16}}$ = $x_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{17}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{18}}$ = $- x_{5} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{19}}$ = $- x_{5} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{20}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{21}}$ = $x_{6} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6f) O II
$\mathbf{B_{22}}$ = $x_{6} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6f) O II
$\mathbf{B_{23}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6f) O II
$\mathbf{B_{24}}$ = $- x_{6} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6f) O II
$\mathbf{B_{25}}$ = $- x_{6} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6f) O II
$\mathbf{B_{26}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6f) O II
$\mathbf{B_{27}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{28}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{29}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{30}}$ = $y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{31}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{32}}$ = $- x_{7} \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{33}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{34}}$ = $y_{7} \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{7} + 2 y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{35}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{36}}$ = $- y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{37}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{7} + 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{38}}$ = $x_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) Li III
$\mathbf{B_{39}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{40}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{41}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{42}}$ = $y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{43}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{44}}$ = $- x_{8} \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{45}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{46}}$ = $y_{8} \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{8} + 2 y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{47}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{48}}$ = $- y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{49}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{8} + 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{50}}$ = $x_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O III
$\mathbf{B_{51}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{52}}$ = $- y_{9} \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - 2 y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{53}}$ = $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{54}}$ = $y_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{55}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - 2 y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{56}}$ = $- x_{9} \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{57}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{58}}$ = $y_{9} \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{9} + 2 y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{59}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{60}}$ = $- y_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{61}}$ = $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{9} + 2 y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{62}}$ = $x_{9} \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O IV
$\mathbf{B_{63}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{64}}$ = $- y_{10} \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - 2 y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{65}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{66}}$ = $y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{67}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - 2 y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{68}}$ = $- x_{10} \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{69}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{70}}$ = $y_{10} \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{10} + 2 y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{71}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{72}}$ = $- y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{73}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{10} + 2 y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{74}}$ = $x_{10} \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O V
$\mathbf{B_{75}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{76}}$ = $- y_{11} \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - 2 y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{77}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{78}}$ = $y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{79}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - 2 y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{80}}$ = $- x_{11} \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{81}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{82}}$ = $y_{11} \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{11} + 2 y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{83}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{84}}$ = $- y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{85}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{11} + 2 y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{86}}$ = $x_{11} \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) O VI
$\mathbf{B_{87}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{88}}$ = $- y_{12} \, \mathbf{a}_{1}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - 2 y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{89}}$ = $- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{90}}$ = $y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{91}}$ = $\left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - 2 y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{92}}$ = $- x_{12} \, \mathbf{a}_{1}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{93}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{94}}$ = $y_{12} \, \mathbf{a}_{1}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{12} + 2 y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{95}}$ = $\left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{96}}$ = $- y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{97}}$ = $- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{12} + 2 y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) P II
$\mathbf{B_{98}}$ = $x_{12} \, \mathbf{a}_{1}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) P II

References

  • S. Poisson, F. d'Yvoire, N. Guyen-Huy-Dung, E. Bretey, and P.Berthet, Crystal Structure and Cation Transport Properties of the Layered Monodiphosphates: Li$_{9}$M$_{3}$(P$_{2}$O$_{7}$)$_{3}$(PO$_{4}$)$_{2}$ ($M$=Al, Ga, Cr, Fe), J. Solid State Chem. 138, 32–40 (1998), doi:10.1006/jssc.1998.7751.

Found in

  • E. Kermarrec, R. Kumar, R. Hénaff, B. Koteswararao, P. L. Paulose, P. Mendels, and F. Bert, Nematic Spin Liquid State in the S=5/2 Heisenberg Kagomé Antiferromagnet Li$_{9}$Fe$_{3}$(P$_{2}$O$_{7}$)$_{3}$(PO$_{4}$)$_{2}$ (2021). ArXiv:2102.02882 [cond-mat.str-el].

Prototype Generator

aflow --proto=A3B9C29D8_hP98_165_f_bdg_df4g_dg --params=$a,c/a,z_{2},z_{3},z_{4},x_{5},x_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12}$

Species:

Running:

Output: