Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B4_hP7_191_f_de-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/AMP4
or https://aflow.org/p/A3B4_hP7_191_f_de-001
or PDF Version

Zr$_{4}$Al$_{3}$ Structure: A3B4_hP7_191_f_de-001

Picture of Structure; Click for Big Picture
Prototype Al$_{3}$Zr$_{4}$
AFLOW prototype label A3B4_hP7_191_f_de-001
ICSD 150529
Pearson symbol hP7
Space group number 191
Space group symbol $P6/mmm$
AFLOW prototype command aflow --proto=A3B4_hP7_191_f_de-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}$

Other compounds with this structure

Hf$_{4}$Al$_{3}$


  • (Wilson, 1960) place this structure in, using modern notation, space group $P\overline{6}m2$ #187, but (Cenzual, 1991) point out that the given atomic coordinates place the structure in the higher symmetry space group $P6/mmm$ #191. We show that structure here.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Zr I
$\mathbf{B_{2}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Zr I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2e) Zr II
$\mathbf{B_{4}}$ = $- z_{2} \, \mathbf{a}_{3}$ = $- c z_{2} \,\mathbf{\hat{z}}$ (2e) Zr II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3f) Al I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3f) Al I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (3f) Al I

References

  • C. G. Wilson, D. K. Thomas, and F. J. Spooner, The crystal structure of Zr$_{4}$Al$_{3}$, Acta Cryst. 13, 56–57 (1960), doi:10.1107/S0365110X60000121.

Found in

  • K. Cenzual, L. M. Gelato, M. Penzo, and E. Parthé, Inorganic structure types with revised space groups. I, Acta Crystallogr. Sect. B 47, 433–439 (1991), doi:10.1107/S0108768191000903.

Prototype Generator

aflow --proto=A3B4_hP7_191_f_de --params=$a,c/a,z_{2}$

Species:

Running:

Output: