Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2_hP10_194_bf_ac-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/CJUB
or https://aflow.org/p/A3B2_hP10_194_bf_ac-001
or PDF Version

β-Be$_{3}$N$_{2}$ Structure: A3B2_hP10_194_bf_ac-001

Picture of Structure; Click for Big Picture
Prototype Be$_{3}$N$_{2}$
AFLOW prototype label A3B2_hP10_194_bf_ac-001
ICSD 25656
Pearson symbol hP10
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=A3B2_hP10_194_bf_ac-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}$

  • This is the high-temperature structure of Be$_{3}$N$_{2}$. Below 1270$^\circ$C $\alpha$–Be$_{3}$N$_{2}$ is in the cubic bixbyite ($D5_{3}$) structure (Wriedt, 1987).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) N I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) N I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2b) Be I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2b) Be I
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2c) N II
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2c) N II
$\mathbf{B_{7}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4f) Be II
$\mathbf{B_{8}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Be II
$\mathbf{B_{9}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4f) Be II
$\mathbf{B_{10}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Be II

References

  • P. Eckerlin and A. Rabenau, Zur Kenntnis des Systems Be$_{3}$N$_{2}$–Si$_{3}$N$_{4}$ Die Struktur einer neuen Modifikation von Be$_{3}$N$_{2}$, Z. Anorganische und Allgemeine Chemie 218, 218–229 (1960), doi:10.1002/zaac.19603040313.

Found in

  • H. A. Wriedt and H. Okamoto, The Be−N (Beryllium-Nitrogen) system, J. Phase Equilibria 8, 136–139 (1987), doi:10.1007/BF02873199.

Prototype Generator

aflow --proto=A3B2_hP10_194_bf_ac --params=$a,c/a,z_{4}$

Species:

Running:

Output: