Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2C11D5_cF168_216_f_e_ab2eh_eg-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/Z69R
or https://aflow.org/p/A3B2C11D5_cF168_216_f_e_ab2eh_eg-001
or PDF Version

Ba$_{3}$In$_{2}$Zn$_{5}$O$_{11}$ Structure: A3B2C11D5_cF168_216_f_e_ab2eh_eg-001

Picture of Structure; Click for Big Picture
Prototype Ba$_{3}$In$_{2}$O$_{11}$Zn$_{5}$
AFLOW prototype label A3B2C11D5_cF168_216_f_e_ab2eh_eg-001
ICSD 73192
Pearson symbol cF168
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=A3B2C11D5_cF168_216_f_e_ab2eh_eg-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak z_{9}$

Other compounds with this structure

Ba$_{3}$Yb$_{2}$Zn$_{5}$O$_{11}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) O I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) O II
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) In I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) In I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) In I
$\mathbf{B_{6}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) In I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) O III
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) O III
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) O III
$\mathbf{B_{10}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) O III
$\mathbf{B_{11}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) O IV
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) O IV
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) O IV
$\mathbf{B_{14}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) O IV
$\mathbf{B_{15}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{16}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{17}}$ = $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{18}}$ = $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{19}}$ = $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}$ (24f) Ba I
$\mathbf{B_{20}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}$ (24f) Ba I
$\mathbf{B_{21}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{y}}$ (24f) Ba I
$\mathbf{B_{22}}$ = $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{y}}$ (24f) Ba I
$\mathbf{B_{23}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{z}}$ (24f) Ba I
$\mathbf{B_{24}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{z}}$ (24f) Ba I
$\mathbf{B_{25}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{26}}$ = $x_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{27}}$ = $x_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{28}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{29}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{30}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{31}}$ = $z_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{32}}$ = $z_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{33}}$ = $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{34}}$ = $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{35}}$ = $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{36}}$ = $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{37}}$ = $z_{9} \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{38}}$ = $z_{9} \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{39}}$ = $z_{9} \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{40}}$ = $z_{9} \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{41}}$ = $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{42}}$ = $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) O V

References

  • M. Scheikowski and H. Müller-Buschbaum, Zur Kristallchemie von Ba$_{3}$In$_{2}$Zn$_{5}$O$_{11}$. Ein Oxoindat/zinkat mit Zn$_{10}$O$_{20^‐}$ und In$_{4}$O$_{16}$‐Makropolyedern und erstmals O$^{2−}$ in tetraedrischer Koordination durch Zn$^{2+}$, Z. Anorganische und Allgemeine Chemie 619, 559–562 (1993), doi:10.1002/zaac.19936190322.

Found in

  • K. Kimura, S. Nakatsuji, and T. Kimura, Experimental realization of a quantum breathing pyrochlore antiferromagnet, Phys. Rev. B 90, 060414 (2014), doi:10.1103/PhysRevB.90.060414.

Prototype Generator

aflow --proto=A3B2C11D5_cF168_216_f_e_ab2eh_eg --params=$a,x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9},z_{9}$

Species:

Running:

Output: