AFLOW Prototype: A3B2C10D3_aP36_2_be2i_2i_10i_3i-001
This structure originally had the label A3B2C10D3_aP36_2_ah2i_2i_10i_3i. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/0ZM1
or
https://aflow.org/p/A3B2C10D3_aP36_2_be2i_2i_10i_3i-001
or
PDF Version
Prototype | Co$_{3}$H$_{2}$O$_{10}$Se$_{3}$ |
AFLOW prototype label | A3B2C10D3_aP36_2_be2i_2i_10i_3i-001 |
ICSD | 66717 |
Pearson symbol | aP36 |
Space group number | 2 |
Space group symbol | $P\overline{1}$ |
AFLOW prototype command |
aflow --proto=A3B2C10D3_aP36_2_be2i_2i_10i_3i-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \alpha, \allowbreak \beta, \allowbreak \gamma, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}$ |
Mn$_{3}$(SeO$_{3}$)$_{3}\cdot$H$_{2}$O, Ni$_{3}$(SeO$_{3}$)$_{3}\cdot$H$_{2}$O
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c_{x} \,\mathbf{\hat{x}}+\frac{1}{2}c_{y} \,\mathbf{\hat{y}}+\frac{1}{2}c_{z} \,\mathbf{\hat{z}}$ | (1b) | Co I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}\left(a + b \cos{\gamma}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \sin{\gamma} \,\mathbf{\hat{y}}$ | (1e) | Co II |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + b y_{3} \cos{\gamma} + c_{x} z_{3}\right) \,\mathbf{\hat{x}}+\left(b y_{3} \sin{\gamma} + c_{y} z_{3}\right) \,\mathbf{\hat{y}}+c_{z} z_{3} \,\mathbf{\hat{z}}$ | (2i) | Co III |
$\mathbf{B_{4}}$ | = | $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + b y_{3} \cos{\gamma} + c_{x} z_{3}\right) \,\mathbf{\hat{x}}- \left(b y_{3} \sin{\gamma} + c_{y} z_{3}\right) \,\mathbf{\hat{y}}- c_{z} z_{3} \,\mathbf{\hat{z}}$ | (2i) | Co III |
$\mathbf{B_{5}}$ | = | $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + b y_{4} \cos{\gamma} + c_{x} z_{4}\right) \,\mathbf{\hat{x}}+\left(b y_{4} \sin{\gamma} + c_{y} z_{4}\right) \,\mathbf{\hat{y}}+c_{z} z_{4} \,\mathbf{\hat{z}}$ | (2i) | Co IV |
$\mathbf{B_{6}}$ | = | $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + b y_{4} \cos{\gamma} + c_{x} z_{4}\right) \,\mathbf{\hat{x}}- \left(b y_{4} \sin{\gamma} + c_{y} z_{4}\right) \,\mathbf{\hat{y}}- c_{z} z_{4} \,\mathbf{\hat{z}}$ | (2i) | Co IV |
$\mathbf{B_{7}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + b y_{5} \cos{\gamma} + c_{x} z_{5}\right) \,\mathbf{\hat{x}}+\left(b y_{5} \sin{\gamma} + c_{y} z_{5}\right) \,\mathbf{\hat{y}}+c_{z} z_{5} \,\mathbf{\hat{z}}$ | (2i) | H I |
$\mathbf{B_{8}}$ | = | $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + b y_{5} \cos{\gamma} + c_{x} z_{5}\right) \,\mathbf{\hat{x}}- \left(b y_{5} \sin{\gamma} + c_{y} z_{5}\right) \,\mathbf{\hat{y}}- c_{z} z_{5} \,\mathbf{\hat{z}}$ | (2i) | H I |
$\mathbf{B_{9}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + b y_{6} \cos{\gamma} + c_{x} z_{6}\right) \,\mathbf{\hat{x}}+\left(b y_{6} \sin{\gamma} + c_{y} z_{6}\right) \,\mathbf{\hat{y}}+c_{z} z_{6} \,\mathbf{\hat{z}}$ | (2i) | H II |
$\mathbf{B_{10}}$ | = | $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + b y_{6} \cos{\gamma} + c_{x} z_{6}\right) \,\mathbf{\hat{x}}- \left(b y_{6} \sin{\gamma} + c_{y} z_{6}\right) \,\mathbf{\hat{y}}- c_{z} z_{6} \,\mathbf{\hat{z}}$ | (2i) | H II |
$\mathbf{B_{11}}$ | = | $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + b y_{7} \cos{\gamma} + c_{x} z_{7}\right) \,\mathbf{\hat{x}}+\left(b y_{7} \sin{\gamma} + c_{y} z_{7}\right) \,\mathbf{\hat{y}}+c_{z} z_{7} \,\mathbf{\hat{z}}$ | (2i) | O I |
$\mathbf{B_{12}}$ | = | $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + b y_{7} \cos{\gamma} + c_{x} z_{7}\right) \,\mathbf{\hat{x}}- \left(b y_{7} \sin{\gamma} + c_{y} z_{7}\right) \,\mathbf{\hat{y}}- c_{z} z_{7} \,\mathbf{\hat{z}}$ | (2i) | O I |
$\mathbf{B_{13}}$ | = | $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + b y_{8} \cos{\gamma} + c_{x} z_{8}\right) \,\mathbf{\hat{x}}+\left(b y_{8} \sin{\gamma} + c_{y} z_{8}\right) \,\mathbf{\hat{y}}+c_{z} z_{8} \,\mathbf{\hat{z}}$ | (2i) | O II |
$\mathbf{B_{14}}$ | = | $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + b y_{8} \cos{\gamma} + c_{x} z_{8}\right) \,\mathbf{\hat{x}}- \left(b y_{8} \sin{\gamma} + c_{y} z_{8}\right) \,\mathbf{\hat{y}}- c_{z} z_{8} \,\mathbf{\hat{z}}$ | (2i) | O II |
$\mathbf{B_{15}}$ | = | $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + b y_{9} \cos{\gamma} + c_{x} z_{9}\right) \,\mathbf{\hat{x}}+\left(b y_{9} \sin{\gamma} + c_{y} z_{9}\right) \,\mathbf{\hat{y}}+c_{z} z_{9} \,\mathbf{\hat{z}}$ | (2i) | O III |
$\mathbf{B_{16}}$ | = | $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + b y_{9} \cos{\gamma} + c_{x} z_{9}\right) \,\mathbf{\hat{x}}- \left(b y_{9} \sin{\gamma} + c_{y} z_{9}\right) \,\mathbf{\hat{y}}- c_{z} z_{9} \,\mathbf{\hat{z}}$ | (2i) | O III |
$\mathbf{B_{17}}$ | = | $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + b y_{10} \cos{\gamma} + c_{x} z_{10}\right) \,\mathbf{\hat{x}}+\left(b y_{10} \sin{\gamma} + c_{y} z_{10}\right) \,\mathbf{\hat{y}}+c_{z} z_{10} \,\mathbf{\hat{z}}$ | (2i) | O IV |
$\mathbf{B_{18}}$ | = | $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + b y_{10} \cos{\gamma} + c_{x} z_{10}\right) \,\mathbf{\hat{x}}- \left(b y_{10} \sin{\gamma} + c_{y} z_{10}\right) \,\mathbf{\hat{y}}- c_{z} z_{10} \,\mathbf{\hat{z}}$ | (2i) | O IV |
$\mathbf{B_{19}}$ | = | $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + b y_{11} \cos{\gamma} + c_{x} z_{11}\right) \,\mathbf{\hat{x}}+\left(b y_{11} \sin{\gamma} + c_{y} z_{11}\right) \,\mathbf{\hat{y}}+c_{z} z_{11} \,\mathbf{\hat{z}}$ | (2i) | O V |
$\mathbf{B_{20}}$ | = | $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- \left(a x_{11} + b y_{11} \cos{\gamma} + c_{x} z_{11}\right) \,\mathbf{\hat{x}}- \left(b y_{11} \sin{\gamma} + c_{y} z_{11}\right) \,\mathbf{\hat{y}}- c_{z} z_{11} \,\mathbf{\hat{z}}$ | (2i) | O V |
$\mathbf{B_{21}}$ | = | $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $\left(a x_{12} + b y_{12} \cos{\gamma} + c_{x} z_{12}\right) \,\mathbf{\hat{x}}+\left(b y_{12} \sin{\gamma} + c_{y} z_{12}\right) \,\mathbf{\hat{y}}+c_{z} z_{12} \,\mathbf{\hat{z}}$ | (2i) | O VI |
$\mathbf{B_{22}}$ | = | $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ | = | $- \left(a x_{12} + b y_{12} \cos{\gamma} + c_{x} z_{12}\right) \,\mathbf{\hat{x}}- \left(b y_{12} \sin{\gamma} + c_{y} z_{12}\right) \,\mathbf{\hat{y}}- c_{z} z_{12} \,\mathbf{\hat{z}}$ | (2i) | O VI |
$\mathbf{B_{23}}$ | = | $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $\left(a x_{13} + b y_{13} \cos{\gamma} + c_{x} z_{13}\right) \,\mathbf{\hat{x}}+\left(b y_{13} \sin{\gamma} + c_{y} z_{13}\right) \,\mathbf{\hat{y}}+c_{z} z_{13} \,\mathbf{\hat{z}}$ | (2i) | O VII |
$\mathbf{B_{24}}$ | = | $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ | = | $- \left(a x_{13} + b y_{13} \cos{\gamma} + c_{x} z_{13}\right) \,\mathbf{\hat{x}}- \left(b y_{13} \sin{\gamma} + c_{y} z_{13}\right) \,\mathbf{\hat{y}}- c_{z} z_{13} \,\mathbf{\hat{z}}$ | (2i) | O VII |
$\mathbf{B_{25}}$ | = | $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ | = | $\left(a x_{14} + b y_{14} \cos{\gamma} + c_{x} z_{14}\right) \,\mathbf{\hat{x}}+\left(b y_{14} \sin{\gamma} + c_{y} z_{14}\right) \,\mathbf{\hat{y}}+c_{z} z_{14} \,\mathbf{\hat{z}}$ | (2i) | O VIII |
$\mathbf{B_{26}}$ | = | $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ | = | $- \left(a x_{14} + b y_{14} \cos{\gamma} + c_{x} z_{14}\right) \,\mathbf{\hat{x}}- \left(b y_{14} \sin{\gamma} + c_{y} z_{14}\right) \,\mathbf{\hat{y}}- c_{z} z_{14} \,\mathbf{\hat{z}}$ | (2i) | O VIII |
$\mathbf{B_{27}}$ | = | $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ | = | $\left(a x_{15} + b y_{15} \cos{\gamma} + c_{x} z_{15}\right) \,\mathbf{\hat{x}}+\left(b y_{15} \sin{\gamma} + c_{y} z_{15}\right) \,\mathbf{\hat{y}}+c_{z} z_{15} \,\mathbf{\hat{z}}$ | (2i) | O IX |
$\mathbf{B_{28}}$ | = | $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ | = | $- \left(a x_{15} + b y_{15} \cos{\gamma} + c_{x} z_{15}\right) \,\mathbf{\hat{x}}- \left(b y_{15} \sin{\gamma} + c_{y} z_{15}\right) \,\mathbf{\hat{y}}- c_{z} z_{15} \,\mathbf{\hat{z}}$ | (2i) | O IX |
$\mathbf{B_{29}}$ | = | $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ | = | $\left(a x_{16} + b y_{16} \cos{\gamma} + c_{x} z_{16}\right) \,\mathbf{\hat{x}}+\left(b y_{16} \sin{\gamma} + c_{y} z_{16}\right) \,\mathbf{\hat{y}}+c_{z} z_{16} \,\mathbf{\hat{z}}$ | (2i) | O X |
$\mathbf{B_{30}}$ | = | $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ | = | $- \left(a x_{16} + b y_{16} \cos{\gamma} + c_{x} z_{16}\right) \,\mathbf{\hat{x}}- \left(b y_{16} \sin{\gamma} + c_{y} z_{16}\right) \,\mathbf{\hat{y}}- c_{z} z_{16} \,\mathbf{\hat{z}}$ | (2i) | O X |
$\mathbf{B_{31}}$ | = | $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ | = | $\left(a x_{17} + b y_{17} \cos{\gamma} + c_{x} z_{17}\right) \,\mathbf{\hat{x}}+\left(b y_{17} \sin{\gamma} + c_{y} z_{17}\right) \,\mathbf{\hat{y}}+c_{z} z_{17} \,\mathbf{\hat{z}}$ | (2i) | Se I |
$\mathbf{B_{32}}$ | = | $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ | = | $- \left(a x_{17} + b y_{17} \cos{\gamma} + c_{x} z_{17}\right) \,\mathbf{\hat{x}}- \left(b y_{17} \sin{\gamma} + c_{y} z_{17}\right) \,\mathbf{\hat{y}}- c_{z} z_{17} \,\mathbf{\hat{z}}$ | (2i) | Se I |
$\mathbf{B_{33}}$ | = | $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ | = | $\left(a x_{18} + b y_{18} \cos{\gamma} + c_{x} z_{18}\right) \,\mathbf{\hat{x}}+\left(b y_{18} \sin{\gamma} + c_{y} z_{18}\right) \,\mathbf{\hat{y}}+c_{z} z_{18} \,\mathbf{\hat{z}}$ | (2i) | Se II |
$\mathbf{B_{34}}$ | = | $- x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ | = | $- \left(a x_{18} + b y_{18} \cos{\gamma} + c_{x} z_{18}\right) \,\mathbf{\hat{x}}- \left(b y_{18} \sin{\gamma} + c_{y} z_{18}\right) \,\mathbf{\hat{y}}- c_{z} z_{18} \,\mathbf{\hat{z}}$ | (2i) | Se II |
$\mathbf{B_{35}}$ | = | $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ | = | $\left(a x_{19} + b y_{19} \cos{\gamma} + c_{x} z_{19}\right) \,\mathbf{\hat{x}}+\left(b y_{19} \sin{\gamma} + c_{y} z_{19}\right) \,\mathbf{\hat{y}}+c_{z} z_{19} \,\mathbf{\hat{z}}$ | (2i) | Se III |
$\mathbf{B_{36}}$ | = | $- x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ | = | $- \left(a x_{19} + b y_{19} \cos{\gamma} + c_{x} z_{19}\right) \,\mathbf{\hat{x}}- \left(b y_{19} \sin{\gamma} + c_{y} z_{19}\right) \,\mathbf{\hat{y}}- c_{z} z_{19} \,\mathbf{\hat{z}}$ | (2i) | Se III |