Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_oP12_60_d_c-001

This structure originally had the label A2B_oP12_60_d_c.Fe2N. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/5GP6
or https://aflow.org/p/A2B_oP12_60_d_c-001
or PDF Version

ζ-Fe$_{2}$N Structure: A2B_oP12_60_d_c-001

Picture of Structure; Click for Big Picture
Prototype Fe$_{2}$N
AFLOW prototype label A2B_oP12_60_d_c-001
ICSD 81732
Pearson symbol oP12
Space group number 60
Space group symbol $Pbcn$
AFLOW prototype command aflow --proto=A2B_oP12_60_d_c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

Other compounds with this structure

Mo$_{2}$C


  • Fe$_{2}$N can also be found in the $\eta$-Fe$_{2}$N/$\beta$–V$_{2}$N ($L'3_{2}$) structure. It has also been reported in the $L'3_{0}$ structure
  • This structure has the same AFLOW label as $\alpha$–PbO$_{2}$, but in that case the lead site is only 49% occupied, so the composition is actually closer to PbO$_{4}$.
  • The structures are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) N I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) N I
$\mathbf{B_{3}}$ = $- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) N I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) N I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8d) Fe I
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) Fe I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) Fe I
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8d) Fe I
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8d) Fe I
$\mathbf{B_{10}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) Fe I
$\mathbf{B_{11}}$ = $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) Fe I
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8d) Fe I

References

  • D. Rechenbach and H. Jacobs, Structure determination of ζ-Fe$_{2}$N by neutron and synchrotron powder diffraction 235, 15–22 (1996), doi:10.1016/0925-8388(95)02097-7.

Prototype Generator

aflow --proto=A2B_oP12_60_d_c --params=$a,b/a,c/a,y_{1},x_{2},y_{2},z_{2}$

Species:

Running:

Output: