AFLOW Prototype: A2B_oC12_38_de_ab-001
This structure originally had the label A2B_oC12_38_de_ab. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/PCHF
or
https://aflow.org/p/A2B_oC12_38_de_ab-001
or
PDF Version
Prototype | Au$_{2}$V |
AFLOW prototype label | A2B_oC12_38_de_ab-001 |
ICSD | 58614 |
Pearson symbol | oC12 |
Space group number | 38 |
Space group symbol | $Amm2$ |
AFLOW prototype command |
aflow --proto=A2B_oC12_38_de_ab-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}$ |
Cu$_{2}$Ti, Pt$_{2}$Ta
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (2a) | V I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{2} \,\mathbf{\hat{z}}$ | (2b) | V II |
$\mathbf{B_{3}}$ | = | $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4d) | Au I |
$\mathbf{B_{4}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4d) | Au I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (4e) | Au II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (4e) | Au II |