AFLOW Prototype: A2B_hP9_189_fg_ad-001
This structure originally had the label A2B_hP9_189_fg_bc. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/6UK2
or
https://aflow.org/p/A2B_hP9_189_fg_ad-001
or
PDF Version
Prototype | Fe$_{2}$P |
AFLOW prototype label | A2B_hP9_189_fg_ad-001 |
Strukturbericht designation | $C22$ |
Mineral name | barringerite |
ICSD | 200529 |
Pearson symbol | hP9 |
Space group number | 189 |
Space group symbol | $P\overline{6}2m$ |
AFLOW prototype command |
aflow --proto=A2B_hP9_189_fg_ad-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}$ |
Co$_{2}$As, Mg$_{2}$In, Mn$_{2}$P, Ni$_{2}$P, Pd$_{2}$As, Pd$_{2}$Ge, Pd$_{2}$Si, Pt$_{2}$Ge, Pt$_{2}$Si (HT)
generally accepted for years, [but] has recently been shown to be incorrect.This is the corrected structure, as given in Wyckoff and (Villars, 1991). See the original Fe$_{2}$P ($C22$) page for the Strukturbericht version of this crystal.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | P I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2d) | P II |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2d) | P II |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (3f) | Fe I |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (3f) | Fe I |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (3f) | Fe I |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Fe II |
$\mathbf{B_{8}}$ | = | $x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Fe II |
$\mathbf{B_{9}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Fe II |