Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_hP9_180_i_d-001

This structure originally had the label A2B_hP9_180_j_c. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/MK1H
or https://aflow.org/p/A2B_hP9_180_i_d-001
or PDF Version

β-SiO$_{2}$ ($C8$) Structure: A2B_hP9_180_i_d-001

Picture of Structure; Click for Big Picture
Prototype O$_{2}$Si
AFLOW prototype label A2B_hP9_180_i_d-001
Strukturbericht designation $C8$
ICSD 26430
Pearson symbol hP9
Space group number 180
Space group symbol $P6_222$
AFLOW prototype command aflow --proto=A2B_hP9_180_i_d-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}$

  • This is the high-temperature structure of $\alpha$-quartz. It can also be found in the enantiomorphic space group It can also be found in the enantiomorphic space group $P6_{4}22$ #181.
  • (Wright, 1981) put the oxygen atoms on half-filled (12k) sites, with pairs of oxygen sites separated by only 0.4Å. We approximate the structure here by moving the oxygen atoms to fully-filled (6i) sites.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3d) Si I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) Si I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ (3d) Si I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (6i) O I
$\mathbf{B_{5}}$ = $- 2 x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (6i) O I
$\mathbf{B_{8}}$ = $2 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) O I

References

  • A. F. Wright and M. S. Lehmann, The Structure of Quartz at 25 and 590$^\circ$C Determined by Neutron Diffraction, J. Solid State Chem. 36, 371–380 (1981), doi:10.1016/0022-4596(81)90449-7.

Found in

  • Mineral Web $\beta$-quartz structure.

Prototype Generator

aflow --proto=A2B_hP9_180_i_d --params=$a,c/a,x_{2}$

Species:

Running:

Output: