Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_hP9_152_c_a-001

This structure originally had the label A2B_hP9_152_c_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/P53L
or https://aflow.org/p/A2B_hP9_152_c_a-001
or PDF Version

α-Quartz (low Quartz) Structure: A2B_hP9_152_c_a-001

Picture of Structure; Click for Big Picture
Prototype O$_{2}$Si
AFLOW prototype label A2B_hP9_152_c_a-001
Mineral name quartz
ICSD 67121
Pearson symbol hP9
Space group number 152
Space group symbol $P3_121$
AFLOW prototype command aflow --proto=A2B_hP9_152_c_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

  • When $x_{1}=1/2$, $y_{2}=2x_{2}$, and $z_{2}=1/2$ this tranforms into the high $\beta$-quartz ($C8$) structure. This structure can also be found in the enantiomorphic space group $P3_{2}21$ #154.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3a) Si I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (3a) Si I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (3a) Si I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{5}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{6}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{2} + 2\right) \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{7}}$ = $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{8}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{2} - 2\right) \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6c) O I

References

  • R. M. Hazen, L. W. Finger, R. J. Hemley, and H. K. Mao, High-pressure crystal chemistry and amorphization of α-quartz, Solid State Commun. 72, 507–511 (1989), doi:10.1016/0038-1098(89)90607-8.

Found in

  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).

Prototype Generator

aflow --proto=A2B_hP9_152_c_a --params=$a,c/a,x_{1},x_{2},y_{2},z_{2}$

Species:

Running:

Output: