AFLOW Prototype: A2BC_oP8_51_i_a_f-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/DRSV
or
https://aflow.org/p/A2BC_oP8_51_i_a_f-001
or
PDF Version
Prototype | BCU$_{2}$ |
AFLOW prototype label | A2BC_oP8_51_i_a_f-001 |
ICSD | 69767 |
Pearson symbol | oP8 |
Space group number | 51 |
Space group symbol | $Pmma$ |
AFLOW prototype command |
aflow --proto=A2BC_oP8_51_i_a_f-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | C I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (2a) | C I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2f) | U I |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (2f) | U I |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ | (4i) | B I |
$\mathbf{B_{6}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ | (4i) | B I |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- c z_{3} \,\mathbf{\hat{z}}$ | (4i) | B I |
$\mathbf{B_{8}}$ | = | $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- c z_{3} \,\mathbf{\hat{z}}$ | (4i) | B I |