Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC_oP8_51_i_a_f-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/DRSV
or https://aflow.org/p/A2BC_oP8_51_i_a_f-001
or PDF Version

α-UB$_{2}$C Structure: A2BC_oP8_51_i_a_f-001

Picture of Structure; Click for Big Picture
Prototype BCU$_{2}$
AFLOW prototype label A2BC_oP8_51_i_a_f-001
ICSD 69767
Pearson symbol oP8
Space group number 51
Space group symbol $Pmma$
AFLOW prototype command aflow --proto=A2BC_oP8_51_i_a_f-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}$

  • This is the ground state of UB$_{2}$C, stable up to 1675$^\circ$C. Above that temperature it transforms to rhombohedral $\beta$–UB$_{2}$C with the ThB$_{2}$C structure. (Rogl, 1991)
  • We use the data taken at 29K.
  • The origin has been shifted to put the carbon atoms on the (2a) site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) C I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (2a) C I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2f) U I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (2f) U I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (4i) B I
$\mathbf{B_{6}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (4i) B I
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- c z_{3} \,\mathbf{\hat{z}}$ (4i) B I
$\mathbf{B_{8}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- c z_{3} \,\mathbf{\hat{z}}$ (4i) B I

References

  • P. Rogl and P. Fischer, Powder neutron diffraction of αUB$_{2}$C (αUB$_{2}$C-type), J. Solid State Chem. 90, 285–290 (1991), doi:10.1016/0022-4596(91)90144-7.

Prototype Generator

aflow --proto=A2BC_oP8_51_i_a_f --params=$a,b/a,c/a,z_{2},x_{3},z_{3}$

Species:

Running:

Output: